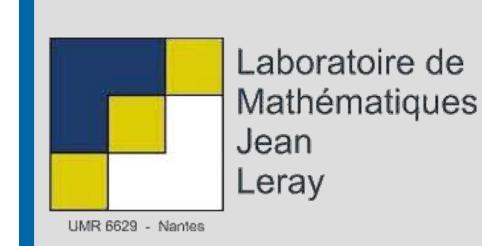


Nantes Université

Dictionary-Based Model Reduction for State Estimation

A. Pasco and A. Nouy

Centrale Nantes, Nantes Université, LMJL, UMR CNRS 6629 alexandre.pasco@ec-nantes.fr,anthony.nouy@ec-nantes.fr



Context

We aim to approximate an **unknown state** $u(\xi) \in U$, e.g. $U = \mathbb{R}^{\mathcal{N}}$, solution of the **parametric problem**

$$\mathcal{F}(u(\xi), \xi) = 0,$$

where $\xi \in \mathcal{P} \subset \mathbb{R}^d$ is an **unknown parameter**. We only have access to m **linear measurements** on $u(\xi)$, in a **noise-less** framework, $\ell_1(u), \cdots, \ell_m(u) \in \mathbb{R}$. Equivalently, we

measure $w = P_W u(\xi)$ with $\dim(W) = m$. We then use **Model Order Reduction** on $\mathcal{M} := \{u(\xi') : \xi' \in \mathcal{P}\} \subset U$ as prior knowledge to estimate the state.

One-space approach (PBDW) [3]

Formulation

 \circ Given a n-dimensional space V such that $\operatorname{dist}(V,\mathcal{M}) \leq \varepsilon.$

• Assume finiteness of the inf-sup constant

$$\mu(V, W) := \sup_{x \in W^{\perp}} \frac{\|x\|}{\|x - P_V x\|}$$

One space (PBDW) recovery

$$A_V(w) := v^* + \eta^*,$$

$$v^* := \underset{v \in V}{\operatorname{argmin}} \|w - P_W v\|, \quad \eta^* := w - P_W v^*.$$
 Best fitted to the observations in V To fit the observations

Properties

► A priori error bound

$$||u - A_V(w)|| \le \mu(V, W)\varepsilon.$$

 $ightharpoonup A_V$ is **optimal** when \mathcal{M} is a cylinder centered at V.

Issues

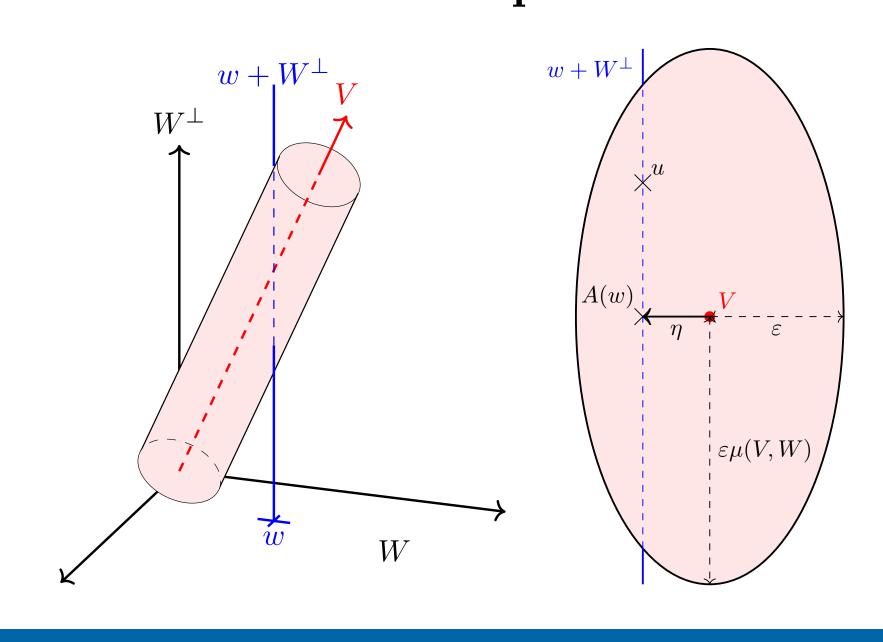
The approach may perform poorly when:

 \triangleright The Kolmogorov *n*-width $d_n(\mathcal{M})$ has a **slow decay**,

$$d_n(\mathcal{M}) := \inf_{\dim V = n} \operatorname{dist}(V, \mathcal{M}).$$

 \triangleright The number and type of measurements are restricted, which deteriorates $\mu(V,W)$.

Geometric interpretation



Conclusion and future work

- ► More details on the arXiv preprint (QR-code).
- Noisy observations case ?
- ➤ More nonlinear recovery maps (auto-encoders)?

References

- [1] O. Balabanov and A. Nouy. Randomized linear algebra for model reduction. Part I: Galerkin methods and error estimation. *Adv Comput Math*, 45(5-6):2969–3019, Dec. 2019.
- [2] A. Cohen, W. Dahmen, O. Mula, and J. Nichols. Nonlinear Reduced Models for State and Parameter Estimation. SIAM/ASA J. Uncertainty Quantification, 10(1):227–267, Mar. 2022.
- [3] Y. Maday, A. T. Patera, J. D. Penn, and M. Yano. A parameterized-background data-weak approach to variational data assimilation: Formulation, analysis, and application to acoustics. *Int. J. Numer. Meth. Engng*, 102(5):933–965, May
- [4] A. Nouy and A. Pasco. Dictionary-based model reduction for state estimation,

Multi-space approach [2]

Formulation

 \circ Approximate \mathcal{M} by a library of spaces of dim $\leq n$, $\mathcal{L}_n^N := \{V_1, \cdots, V_N\}, \ \operatorname{dist}(\mathcal{M}, \cup_{k=1}^N V_k) \leq \varepsilon.$

• Assume we have $S(\cdot, \mathcal{M})$ such that for all $v \in U$, $c \operatorname{dist}(v, \mathcal{M}) \leq S(v, \mathcal{M}) \leq C \operatorname{dist}(v, \mathcal{M})$.

Multi-space recovery

Select the recovery
$$A^{\text{mult}}_{\mathcal{S}}(w) := A_{V_{\mathcal{S}}}(w)$$
 with $V_{\mathcal{S}} = V_{\mathcal{S}}(w) := \operatorname*{argmin}_{V \in \mathcal{L}^N_n} \mathcal{S}(A_V(w), \mathcal{M})$

Properties

- \blacktriangleright **Better prior** approximation of \mathcal{M} with low-dimensional subspaces, thus better stability expected.
- ► Near-optimal selection if P_W is injective on \mathcal{M} , $\|u A_{\mathcal{S}}^{\text{mult}}(w)\| \leq 2\frac{C}{c}\mu(\mathcal{M}, W) \min_{V \in \mathcal{L}_n^N} \|u A_V(w)\|,$

where $\mu(\mathcal{M}, W)$ reflects the orientation between \mathcal{M} and W.

Issues

 \triangleright The stability constant $\mu(\mathcal{M}, W)$ is generally not computable and may be infinite.

Dictionary-based multi-space [4]

Formulation

- Given a dictionary $\mathcal{D}_K := \{v^{(1)}, \cdots, v^{(K)}\}$, consider the library $\mathcal{L}_m(\mathcal{D}_K)$ containing the subspaces spanned by at most m vectors from \mathcal{D}_K .
- \circ For $\alpha > 0$ consider the Lasso problem

$$\mathbf{x}_{\alpha}(w) \in \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \frac{1}{2} \| w - \sum_{i=1}^K \mathbf{x}_i P_W v^{(i)} \|^2 + \alpha \| \mathbf{x} \|_1,$$

use the non-zero components to build the subspace $V_{\alpha}(w) := \operatorname{span}\{v^{(i)}: \mathbf{x}_{\alpha}(w)_i \neq 0\} \in \mathcal{L}_m(\mathcal{D}_K).$

Dictionary-based multi-space recovery

LARS algorithm solves the Lasso for all α and gives a finite sub-library $\mathcal{L}^{\mathrm{dic}}(w) := \{V_{\alpha}(w) : \alpha > 0\}$ among which we select the recovery $A_{\mathcal{S}}^{\mathrm{dic}}(w) := A_{V_{\mathcal{S}}}(w)$ with

$$V_{\mathcal{S}} = V_{\mathcal{S}}(w) := \underset{V \in \mathcal{L}^{\mathrm{dic}}(w)}{\operatorname{argmin}} \ \mathcal{S}(A_V(w), \mathcal{M})$$

Properties

- \blacktriangleright Wide range of possible background spaces V.
- ► Near-optimal selection among the sub-library.
- ► **Fast online** sub-library generation with LARS.

Issues

⊳ Same issue as multi-space.

Randomized approach for linear PDEs

Linear PDE framework

o Consider $U=\mathbb{R}^{\mathcal{N}},\,B(\xi)\in\mathbb{R}^{\mathcal{N}\times\mathcal{N}},\,f(\xi)\in\mathbb{R}^{\mathcal{N}}$ such that $B(\xi)u(\xi)=f(\xi)$

with singular values of $B(\cdot)$ bounded by $0 < c \le C$.

• Consider the residual-based quantity [2]

• Consider the residual-based quantity [2]

$$S(v, \mathcal{M}) := \min_{\xi \in \mathcal{P}} ||B(\xi)v - f(\xi)||, \quad v \in U$$

Properties

be computed by solving a non-linear least-squares problem, built via an **offline-online** decomposition.

Issues

➤ The previous **offline cost** may be prohibitive (esp. for dicbased approach) and sensitive to **round-off errors**.

Randomized approach

 \circ Consider a random (e.g. gaussian) matrix $\Theta \in \mathbb{R}^{k \times \mathcal{N}}$

Randomized residual-based distance

Use the randomized quantity

$$\mathcal{S}^{\Theta}(v, \mathcal{P}) := \min_{\xi \in \mathcal{P}} \|\Theta(B(\xi)v - f(\xi))\|.$$

Properties

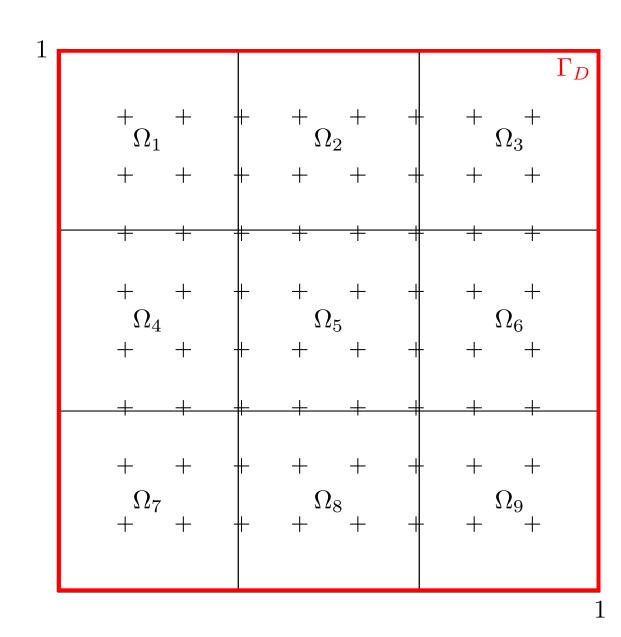
▶ When B and f are parameter separable, $S(\cdot, \mathcal{M})$ can ▶ for any $v \in U$, with high probability,

$$\sqrt{1-\epsilon} \,\, \mathcal{S}(v,\mathcal{P}) \le \mathcal{S}^{\Theta}(v,\mathcal{P}) \le \sqrt{1+\epsilon} \,\, \mathcal{S}(v,\mathcal{P})$$

where $\epsilon \in (0, 1)$ and a small number k of rows of Θ [1].

- Same as the residual-based quantity, but $S^{\Theta}(\cdot, \mathcal{M})$ is computed with a **more efficient** and **more stable** offline-online decomposition.
- ► Near-optimal selection with high probability.

Numerical example



 $\begin{array}{c} 90\% \\ \hline 10^{-2} \\ \hline 8917 \\ \hline 8917 \\ \hline 8917 \\ \hline 997 \\ \hline 10^{-2} \\ \hline 10^{$

2D diffusion

Thermal block problem with d = 9 subdomains,

$$\begin{cases}
-\nabla \cdot (\kappa \nabla u) = 1 & \text{in } \Omega, \\
u = 0 & \text{on } \Gamma_D, \\
\kappa = \xi_i & \text{in } \Omega_i,
\end{cases}$$

with m=64 local convolution sensors, and a random matrix Θ with k=100 rows.