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Introduction

u(x) = sin(x1 + 3x2) v(x) = sin(x1+3x2+0.05x1x2)
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Introduction

• Goal : Approximate u : Rd → R ∈ C1 with d≫ 1, i.e. minimize

E(ũ) := E
[
(u(X)− ũ(X))2

]

where X has probability density µX.

• Given : Few costly point evaluations

(
x(i), u(x(i)),∇u(x(i))

)
1≤i≤ns

.
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Introduction

• Approximation of the form ũ = f ◦ g.

• Step 1 : Learn a feature map g ∈ Gm ⊆ C1(Rd,Rm) with m ≤ d, for
some chosen tractable function class Gm.

• Step 2 : Learn a profile map f : Rm → R.
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Introduction

• For a given g, the best profile map is

fg(z) := E [u(X)|Z = z] ,

where Z := g(X) ∈ Rm. Problem : not computable.

• In practice : learn f∗ via regression,

inf
f∈F

E
[
(u(X)− f(Z))2

]

• One can also consider gradient enhanced regression.
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The set Gm

• [Constantine et al., 2014]
Linear g(x) = GTx with G ∈ Rd×m.

• [Bigoni et al., 2022, Romor et al., 2022]
Vector space g(x) = GTΦ(x) with Φ : Rd → RK and G ∈ RK×m

with K ≥ d.

• [Verdière et al., 2023, Zhang et al., 2019]
Diffeomorphism-based g(x) = (ψ1(x), · · · , ψm(x))T where
ψ : Rd → Rd is a diffeomorphism.

6 / 27



The set Gm

• [Constantine et al., 2014]
Linear g(x) = GTx with G ∈ Rd×m.

• [Bigoni et al., 2022, Romor et al., 2022]
Vector space g(x) = GTΦ(x) with Φ : Rd → RK and G ∈ RK×m

with K ≥ d.

• [Verdière et al., 2023, Zhang et al., 2019]
Diffeomorphism-based g(x) = (ψ1(x), · · · , ψm(x))T where
ψ : Rd → Rd is a diffeomorphism.

6 / 27



The set Gm

• [Constantine et al., 2014]
Linear g(x) = GTx with G ∈ Rd×m.

• [Bigoni et al., 2022, Romor et al., 2022]
Vector space g(x) = GTΦ(x) with Φ : Rd → RK and G ∈ RK×m

with K ≥ d.

• [Verdière et al., 2023, Zhang et al., 2019]
Diffeomorphism-based g(x) = (ψ1(x), · · · , ψm(x))T where
ψ : Rd → Rd is a diffeomorphism.

6 / 27



Poincaré Inequality

• Assuming ∇g(X) has rank m a.s., then MZ := g−1(Z) is a smooth
submanifold of Rd.

• Let CZ the smallest constant such that for any h ∈ C1(MZ,R) with
mean 0,

E
[
h(X)2|Z = z

]
≤ CZE

[
∥∇h(X)∥22|Z = z

]
.

If CZ <∞ we say that µX|Z=z satisfies a Poincaré Inequality.

• Apply to h = (u− fg ◦ g)|Mz
for x ∈ Mz,

∥∇h(x)∥22 = ∥Π⊥
∇g(x)∇u(x)∥22 = ∥∇u(x)∥22 − ∥Π∇g(x)∇u(x)∥22
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Poincaré-based upper-bound

For g ∈ Gm define

J (g) := E
[
∥Π⊥

∇g(X)∇u(X)∥22
]

(1) Assume rank(∇g(x)) = m for all x ∈ X and all g ∈ Gm.

(2) Assume C(X|Gm) <∞ where

C(X|Gm) := sup
g∈Gm

sup
z∈g(X )

Cz.

Proposition ([Bigoni et al., 2022])

Under assumptions (1) and (2), it holds

min
f :Rm→R

E
[
(u(X)− f ◦ g(X))2

]
≤ C(X|Gm)J (g)
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Poincaré-based upper-bound
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The Poincaré Constant

Caveats:

• For general classes Gm bounding C(Gm) is an open problem.

• Worse : if g−1({z}) is not connected then Cz = ∞.

Hopes:

• Poincaré-like bounds are pessimistic.

• Numerical experiments have shown good performances.
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Caveats:

• For general classes Gm bounding C(Gm) is an open problem.

• Worse : if g−1({z}) is not connected then Cz = ∞.

Hopes:
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The function J

• Recall that

J (g) = E
[
∥∇u(X)∥22

]
− E

[
∥Π∇g(X)∇u(X)∥22

]

• For g(x) = GTx with GTG = Im,

Π∇g(X) = GGT ,

thus G 7→ J (GT ) is quadratic and can be explicitly minimized.

• For g(x) = GTΦ(x) with fixed Φ : Rd → RK ,

Π∇g(X) = ∇Φ(X)G(GT∇Φ(X)T∇Φ(X)G)−1GT∇Φ(X)T ,

thus J is not convex anymore and no explicit minimizer is known.
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The set Gm

• Linear g(x) = GTx with G ∈ Rd×m.

+ Known bounds on C(X|Gm) for some classical µX.
+ Easy to minimize J , i.e. to find the best A.
− Restricted class.

• Vector space g(x) = GTΦ(x) with Φ : Rd → RK and G ∈ RK×m

with K ≥ d.

+ Learning G is more reasonable (J non-convex but Gm convex).
- Cannot say much on Cz.

• Diffeomorphism-based g(x) = (ψ1(x), · · · , ψm(x))T where
ψ : Rd → Rd is a diffeomorphism .

+ Allow penalization for better control on Cz.
− Learning ψ can be difficult (J non-convex and Gm non-convex).
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Surrogate one feature: definition

• The loss function J now writes

J (g) = E
[
∥∇u(X)∥22 −

(∇g(X)T∇u(X))2

∥∇g(X)∥22

]

= E


 1

∥∇g(X)∥22
∥∇u(X)∥22∥Π⊥

∇u(X)∇g(X)∥22︸ ︷︷ ︸
Quadratic wrt g




• Controlling ∥∇g(X)∥22 allows to control J (g) by a quadratic
surrogate,

L1(g) := E
[
∥∇u(X)∥22∥Π⊥

∇u(X)∇g(X)∥22
]
.

• Problem : control should be uniform on G1.
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Surrogate one feature: Uniform control

• Uniformly bi-Lipschitz (ideal setting), i.e

∀g ∈ G1, 0 < c ≤ ∥∇g(X)∥22 ≤ C < +∞

+ Possible when : linear or diffeomorphism-based.

− Not possible when : vector space of dimension K > d.

• Deviation inequalities, i.e rate of convergence of

∀g ∈ G1, P
[
∥∇g(X)∥22 ≤ β−1

]
︸ ︷︷ ︸

Small deviations

, P
[
∥∇g(X)∥22 ≥ β

]
︸ ︷︷ ︸

Large deviations

−−−−−→
β→+∞

0

+ Possible when : x 7→ ∥∇g(x)∥22 satisfies a type of Remez inequality.
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Surrogate one feature: Deviation inequalities

Consider h : Rd → R. Assume that

(1) X has s-concave, s ∈ (0, 1/d], proba law (implies compactly
supported on a convex set).

(2) For any bounded line J ⊂ Rd and any measurable I ⊂ J ,

sup
x∈J

|h(x)| ≤
(Ah|J |

|I|
)kh sup

x∈I
|h(x)|,

e.g. Ah = 4 and kh = k for polynomial with total degree ≤ k.

Proposition (Direct consequence of [Fradelizi, 2009])

Under (1) and (2) and for some ηh, it holds for all β > 0,

P
[
|h(X)| ≤ β−1

]
≲ β−1/kh , P

[
|h(X)| ≥ β−1

]
≲ 1β≤ηh .

For s ∈ [−∞, 0], still holds but slower decay for large deviations.
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Surrogate one feature: Suboptimality result

• If G1 contains only non-constant polynomials of total degree at most
ℓ+ 1, then the previous deviations inequalities hold uniformly on G1

with k = 2ℓ and A = 4.

Proposition

Under (1), with G1 as above, it holds

∀g ∈ G1, γ1L1(g) ≤ J (g) ≤ γ2L1(g)
1

1+2ℓ ,

for some 0 < γ1, γ2 < +∞. In particular, for some 0 < γ3 < +∞,

J (g∗) ≤ γ3 inf
G1

J 1
1+2ℓ

Similar results hold for s ∈ [−∞, 0].
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Surrogate one feature: Vector space

• For assumptions to hold, we consider a sym pd R ∈ RK×K ,

G1 :=
{
g : x 7→ GTΦ(x) : G ∈ RK , GTRG = 1

}
,

• [Bigoni et al., 2022] Invariance property of J implies

inf
g∈span{Φ1,··· ,ΦK}

J (g) = inf
g∈G1

J (g)

Proposition

min
g∈G1

L1(g) = min
G∈RK

GTRG=1

GTHG,

where H := H(1) −H(2) ∈ RK×K is sym psd and

H(1) := E
[
∥∇u(X)∥22∇Φ(X)T∇Φ(X)

]
∈ RK×K ,

H(2) := E
[
∇Φ(X)T∇u(X)∇u(X)T∇Φ(X)

]
∈ RK×K .
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Surrogates multiple features: Quick overview

• With similar reasoning, we define for 1 ≤ j ≤ m,

Lm,j(g) := E
[
∥vg,j(X)∥22∥Π⊥

vg,j(X)Π
⊥
∇g−j(X)∇gj(X)∥22

]
,

with vg,j(x) := Π⊥
∇g−j(x)

∇u(x).

• For fixed g−j : Rd → Rm−1, we use h 7→ Lm,j((g−j , h)) as a
quadratic surrogate to h 7→ J ((g−j , h)).

• Now need deviation inequalities on x 7→ ∥Π⊥
∇g−j(x)

∇gj(x)∥22.

Proposition

Assume the law of X is s-concave with s ∈ (0, 1/d]. Assume Gm is a
compact set of polynomial with total degree at most ℓ+ 1 with full rank
gradients a.s. For a fixed g−j , it holds

γ1Lm,j((g−j , h)) ≤ J ((g−j , h)) ≤ γ2Lm,j((g−j , h))
1

1+2ℓm

18 / 27
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Assume the law of X is s-concave with s ∈ (0, 1/d]. Assume Gm is a
compact set of polynomial with total degree at most ℓ+ 1 with full rank
gradients a.s. For a fixed g−j , it holds

γ1Lm,j((g−j , h)) ≤ J ((g−j , h)) ≤ γ2Lm,j((g−j , h))
1

1+2ℓm
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Numerical experiments

Settings

• Feature: Tensorized polynomial basis Φ(x) = (ϕα(x))α∈Λp,k
with

ϕα(x) :=

d∏

ν=1

ϕναν
(xν), Λp,k := {α ∈ Nd : ∥α∥p ≤ k} \ {0},

where (k, p) are hyperparameters learnt by 5-fold cross-validation.

• Regression: Kernel regression with gaussian kernel and Ridge
regularization, whose hyperparameters are learnt by 10-fold
cross-validation.
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Numerical experiments: one feature

50 75 100 125 150 250 500
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Training sample size N train
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Numerical experiments: one feature
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Numerical experiments: one feature
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Numerical experiments: multiple features
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êg(f) / ∥u∥L2

50 75 100 125 150 250 500
10−4

10−3

10−2

10−1

100

Training sample size N train

eg(f) / ∥u∥L2

GLI

SUR

GSI

u(x) := cos(
1

2
xTx) + sin(

1

2
xTMx), X ∼ U(]− π

2
,
π

2
[8) m = 2

50%, 90% and 100% quantiles over 20 realizations.
Left plots : train and test estimations of J (g)/∥u∥L2 .
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Numerical experiments: multiple features
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Conclusion and Perspectives

• Quadratic surrogates with controlled suboptimality

• Works well for m = 1, more mitigated for m > 1.

→ Structured approach in a Tensor-Network fashion.

→ Optimal sampling for g.

→ Optimal sampling for f , oblivious to g.
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Thank you !
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