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@ Introduction



Introduction

Costly to evaluate u : X — U, parameter set X C R, Hilbert space U.

Offline: construct surrogate @ : X — U. Online: many evaluations of .

Model Order Reduction Feature learning
¢ High-dim: dim(U) =n > 1. ¢ High-dim: dim(X) =d > 1.
® “Low-dim" V, approximating e Approximate u(x) by a function

of g(x) € R™, m < d.
M :={u(x) :xe X} CU.
® Linear case: ridge function
® Linear case: reduced basis [Logan and Shepp, 1975],
[Veroy et al., 2003],
a(x) = f(GTx),

u(x) = Zai(x)v(i), v e U. GeR>™  f:R™ 5 U,
i=1
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Introduction

Parameter-dependent high-dimensional linear equation,

Vx € X, A(x)u(x) = b(x).

Inverse problem Forward problem
Dictionary MOR Linear MOR
® x is unknown and “omitted"”. ® x is known.

® |inear measurements

z=(l1(u)), -, lm(u))).

® Dictionary Dg = {U(i)}lgigKy

Reduced space U, is known.

A(x) is ill-conditioned.

Preconditioner for better
Galerkin projection and error

estimation.
Z aav, (al °

Q)
||2
Q>
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® Model order reduction
Dictionary-based model reduction for state estimation



Inverse problem with MOR

® Linear MOR [Maday et al., 2015, Binev et al., 2017]: PBDW 4y, (2),
dim(U,) =r <m, dist(Up, M) <&, |u—1ty,(z)|v < prer.
+ Online efficient. — Limited by linear Kolmogorov width.
® Piecewise linear MOR [Cohen et al., 2022]:

N ={Ul:1<i< N}, dist( | ) UP M) <e,.
1<i<N

Select V*(z) using S(-, M) surrogate to dist(-, M),

min S(uy(z), M), S(v,M):=minl|A(y)v—> .
min (i (2), M), S(v.M) = min | Ay}~ b(y)lo
+ Near optimal selection for inf-sup stable A.
+ Nonlinear width [Temlyakov, 1998].
-+ Parameter separable = Online efficient.
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Computing the selection criterion S

® Assume parameter separability,
d
A(x) =) z44, and  b(x) = by.
q=1

® Computing S is a linear least-squares problem [Cohen et al., 2022],

S(v,M) = glei% |G(v)y —bollur, G(v) = (A1v, -+, Ay, v).

e Offline: normal equations cost in total O(d*r?Nn).
+ Online efficiency.
— Offline cost may be prohibitive.
— Sensitivity to round-off errors.

® Random sketching [Woodruff, 2014, Martinsson and Tropp, 2020] helps
mitigate these problems [Balabanov and Nouy, 2019].
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Subspace embeddings with random sketching

® O:U — RF is a e-subspace embedding for a subspace V' if

Yo eV, [ll0@)I3 — IlvlE| < ellv]®

® For © with k = O(e 2(dim(V') + log(d~1))) rows as independent
Gaussian vectors with covariance depending on U,

P [© is subspace embedding for V] > 1 — .

© is an oblivious subspace embedding.

® Similar for structured or sparse © with additional log terms.
— Computing ©(v) costs nlog(n).
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Sketched selection criterion

® With parameter separability and structured ©,
§%(v, M) := min[|O(A(y)v — bo) v = min |G (v)y — O(bo) |2,
yex yeX
GO(v) := (OAw, - ,0Aw) € RF*4,

e Offline: S© costs O(drlog(n)Nn), while S costs O(d*r>Nn) .
— Lower offline cost.
— More robust to round-off errors.

e Online: S costs O(kd?), while S costs O(d®).

® Near optimal selection is preserved with high-probability and small k.

Proposition (Nouy and P. 2024)

With k = O(e=2 (d + log(d1))), for any v € U,

P[VI-eSwP)<S®%0w,P)<VI+eSwP)| >1-0.

PhD defense (Alexandre PASCO) — 6 / 43




Inverse problem with dictionary-based MOR

® Forward problem with dictionary-based MOR considered in
[Kaulmann and Haasdonk, 2013, Balabanov and Nouy, 2021b].

Given a dictionary Dg = {vD,--- vF)} C U, consider

L, (Dg) = {V C span{Dg} : dim(V) < r}.

Online adaptive library £,(z) C L, (Dg) from greedy-type algorithm.

Offline cost:

With random sketching With normal equation
O(mKn + dK log(n)n). O(mKn + dQKQn).

Online cost: considering k = O(d),
With random sketching S With normal equation
O(m*K +md*K + &°K). O(m*K +m*d®K + d°K).
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Numerical experiment: parametrized advection diffusion

1
—0.01Au +V(x) - Vu = ﬂﬂgs in €,
™

n ~ 150 000 and u = on I'p,

n-Vu=20 on I'y,

V(x)(y) = Z Hy—ly()H (xier(y(i)) ¥ x +5€0(y(i))>
=1
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Numerical experiment: parametrized advection diffusion
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Figure: Relative H} errors on 500 test snapshots, growing dictionary sizes K,
observations m € {31,61,101}. Full line is the mean relative error. Dotted line is
the maximal relative error. Blue is selection in £(w) with S©. Red is
miny ¢ rop ||u — Gy |ly. Cyan is miny ez ) [|lu —av .
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Conclusion

Conclusion:

® Sketched selection criterion for piecewise-linear MOR.

® Dictionary-based MOR, tractable with random sketching.

Perspectives:

® Fix observations (¢;)1<i<m and construct suited dictionary Dy
® Fix Dk and construct suited (¢;)1<i<m (optimal information).

® Incorporate S© in the adaptive construction of £,(z).
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® Model order reduction

Preconditioners for model order reduction by interpolation and
random sketching of operators (with O. Balabanov)



Introduction

® Forward problem: parameter x € X’ is known.
® MOR: U, is given. Compute u,(x) € U, via Galerkin projection,
Vo e Uy, (o, Ax)up(x)) = (0, b(x)),
and estimate error with a(A(x)) ™| A(x)ur(x) — b(x) ||

® Problem: ill-conditioned operator A(x).
— u,(x) may be far from IIy, u(x).
— Residual-based error estimator may be not efficient.

® Goal: construct P(x) : U' — U a linear approximation of A(x)~!
[Zahm and Nouy, 2016, Balabanov and Nouy, 2021a],

P(x) € span{Yy,---,Y,}, V= A(x;)""
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Quality measure: general purpose in operator norm

General purpose: discrepancy in operator norm || — PAl|y .

Bound on the inf-sup constants of PA,

1= |[I = PAluy < on(PA) < 01(PA) <1+ I - PA|uu.

Preconditioned residual estimator ||PAv — Pbl|y,

|[PAv — Pblly
L+ |1 = PA|lyy

|PAv — Pby
11— PAluy

<u—v|v <

Problem: require ||I — PA||y,r < 1, but online computation and
optimization of P+ ||I — PA||y,v is untractable.
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Quality measure: general purpose in HS norm

Alternative: Hilbert-Schmidt norm |1 — PA| gsw,vy > I — PA|vu-
Minimization of the discrepancy is a least-squares problem,

min I — PA .
Pespan{Yi,,Yp} H HHS(U,U)

Problem 1: fixed P, evaluating || — PA||gsw,) is (very) costly.
— [Zahm and Nouy, 2016] used random estimator.

Problem 2: HS norm can be much larger than operator norm,

1

. < - < - .
dim(U)” laswoy <l -llov < - laswy

— Seminorms tailored to MOR.
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Quality measure: MOR purpose in operator seminorm

® MOR purpose: discrepancy in operator seminorms,
I = PA|vy, = [y, (I = PA)[vy.

® For u, preconditioned Galerkin projection on U,

1

_ < —m

e Computable with (v(9);<;<, o.n.b of Uy,
11— PAIRy, = o1 (0, (1 = PAYT = PAY v D) 0)1ci e ).

+ Online efficient using normal equation.
— Offline is costly and sensitive to round-off errors.
— Minimization over P is challenging.
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Quality measure: MOR purpose in HS seminorm

® Assume given Uy, D Uy, r < m < n, and for some 7 € (0, 1),
lu =y, ully < 7llu—urv.
® A posteriori error estimator,

11y, P(Auy — b)|lu
1+ (1+7)]

<l —urllv

1 HMgr,,, P(Auy — b) v
\/1 —7' (1+7’)HI PAHUUm

® U, CUpthus || vy, < |- v,
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Quality measure: MOR purpose in HS seminorm

e Alternative: Hilbert-Schmidt seminorm,

11 — PAllgsw,u,,) = Mo, (I = PA)|lasw,uv),
® HS seminorms are almost equivalent to operator seminorms,
1
— | Naswu,) < lovm < - Es@0,)-
NGD
e Computable with (v));<;<,, 0.n.b of Uy,

m

[ PAH%IS(U,Um) = Z (1 — PA)TU(i)|’2U7
i=1

-+ Online efficient using normal equation.
— Offline is costly and sensitive to round-off errors.
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Random sketching for HS operators

® Main challenge: Y; are inverses of (sparse) matrices, only accessible
via matrix-vector products.

® Random embedding: consider €2, ¥ and I' “classical” random
sketches, with sketching dimension k, then for an HS operator Y/,

O(Y) :=Tvec(QY xT) € R¥,

— Computed with k& matrix-vector products.
— Adaptable for seminorms.

* Oblivious subspace embedding with k = O(e~2(d + log(n/§))): for
all d-dimensional vector subspace ) of HS operators,

P VY €Y, [I000)1F — IV Ihs| < ellYlis] = 1 -0
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Practical aspects

® Assume parameter separability,
d
A(x) =) 344,
q=1

e Construct P(x) by solving the sketched least-squares problem,

: - . e
pespai?;lf?,.,.,yp}”@(l PA(x))ll2 = min [6(1) = W=(x)al2,

WO(x) € RF*? small matrix with parameter separable columns.

® If b is parameter separable, then preconditioned Galerkin system and
preconditioned error estimator are also parameter separable.

e Offline cost for HS(U,Uy,): O((k A m)pdlog(n)n).

PhD defense (Alexandre PASCO) — 18 / 43



Numerical example

Figure: [Balabanov and Nouy, 2021b] Wave scattering in 2D with a perfect
scatterer covered in an invisibility cloak composed of layers of homogeneous
isotropic materials. Left: Geometry of the problem. Right: real part of random
snapshot.
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Numerical example

‘Hurur‘l\g‘/l\ujl"lzm‘l\\ur 1 |1j||I‘J,I§I‘iuf"r(l‘lr)\|‘2/\\}l*‘Hr\m I Hl‘lj‘er‘g ‘

30 40 5 k 5 30 40
Greedy iteration Greedy iteration Greedy iteration

Figure: Quantiles on test sets (90% continuous, 100% dotted) for the
preconditioned Galerkin projection, along the greedy construction of the
preconditioner space. Left: quasi optimality. Middle: accuracy of error estimator.
Right: absolute error to solution. Three sketched greedy criterions: red is
HS(Up,,Up,), blue is HS(U,U,,), cyan is weighted sum.
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Conclusion

Conclusion:

® Random sketching method for HS operators (generic approach).
® Construction of preconditioner for MOR purpose.
® Offline-online efficiency.

Perspectives for MOR:

® Greedy algorithm constructing (Y;)1<i<p and U, at the same time, as
in [Zahm and Nouy, 2016].

® Nonlinear construction of P(x) (e.g., dictionary-based).

Perspectives for random sketching:

® Sketching of operators for other settings (e.g., eigenvalue problems,
domain decomposition).
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© Feature learning
Surrogate to Poincaré inequalities on manifolds for dimension
reduction in nonlinear feature spaces



Introd

uy(x) = sin(z1 + 3z2) up(x) = sin(z? 4 z3)

Univariate in linear feature. Univariate in nonlinear feature.
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uy(x) = sin(z1 + 3z2) up(x) = sin(z? 4 z3)

AN A

Univariate in linear feature. Univariate in nonlinear feature.
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Introduction: gradient-based dimension reduction

e X e X CR?arandom vector, u: X U =R, d>1, ue(Cl

Classical tools require sample size exponential in d.
— Curse of dimensionality.

Goal: build a feature map g : X — R, m < d, so that u is well
approximated by

i:x = fg(x))

for some low-dimensional profile function f : R™ — R.

Ideal measure of quality of g,

Elg) = inf _E [ju(X) — fog(X)].

Given: few costly point evaluations (x(, u(x®), Vu(x¥))1<i<p. .
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Examples of feature maps

Feature maps considered in gradient-based dimension reduction.

¢ [Constantine et al., 2014]
Linear g(x) = GTx with G € R¥*™,

® [Bigoni et al., 2022, Romor et al., 2022]
g(x) = GT®(x) from vector space with basis ® : R? — R¥ and
G € REX™ with K > d. Typically ® polynomial.

® [Verdiére et al., 2025, Zhang et al., 2019]
Diffeomorphism-based g(x) = (¢1(x), -+ , ¥ (x))T with
¥ : R — RY a diffeomorphism.
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Upper-bound using Poincaré inequalities

® For g: X - R™ and f: R™ — R using the chain rule,
u=fog = Vu(x)=Vyg(x)Vf(g(x)),
— Vu(x) € span{Vgi(x),---, Vgm(x)} € R%,

e We search for g € G, such that Vg(x) is aligned with Vu(x), for
example by minimizing the objective function

J(9) = E [|Vu(X)|5] — E [|[Tyex) Vu(X)[3] -

Proposition ([Bigoni et al., 2022])

If Vg has full matrix rank everywhere,

E(g) < (sup  sup  Cxppx)=s)T(9),
h€Gm zEh(suppX)

with Cx|n(x)=z the Poincaré constant associated to the conditional
measure X|h(X) = z.

4
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On the objective function

J(9) = E [[IVu(X)[3] — E [Ty Va(X)II3] -

® Linear features: g(x) = G'x with GT'G = I,;,, then Ily,x) = GG,
thus G — J(GT) is quadratic and minimized by the dominant
eigenvectors of

E [Vu(X)Vu(X)'] € R
e Nonlinear features: g(x) = GT®(x) with fixed ® : R — RX,
ly,x) = VO(X)G(G'Ve(X)"Ve(X)G)'GTVe(X)T,

thus J is not convex anymore and no explicit minimizer is known.
— Design quadratic surrogates.
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Surrogate for m =1

® With m = 1 the objective function writes

Ty 2
70 = [Ivueo - TEI ]
1
=E | 007 [Vl 00 Vo (X)1

Quadratic wrt g

® Control on ||[Vg(X)||3 yields control on [7(g) with a quadratic
surrogate,

£1(9) = E [ Vu(X) 3115, x, Vo(X) 3]

e Uniform lower bound on [|Vg(X)||2 not available (e.g. polynomials).
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Deviation inequalities for polynomials

Control ||[Vg(X)|3 in terms of deviation inequalities, i.e. the decay of

P[IVg(X)I3 <87 P[IVg(X)I3 = B8] as B — +oo.

~
Small deviations Large deviations

Proposition (Direct consequence of [Fradelizi, 2009])

If X is uniformly distributed on a convex set and h : R* — R is polynomial
with total degree at most k, then for all 5 > 0,

B [|h(X)| < 7] < 5.

® Generalized to s-concave measures (here s = 1/d).
® Generalized to h satisfying a Remez inequality.

¢ Constants behind < involve moments of |h(X)].
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Analysis of the surrogate for m =1

Assumptions
(1) X is uniformly distributed on a convex set.

(2) Every g € G; is a non-constant polynomial of total degree at most
¢+ 1 such that E [||[Vg(X)||3] = 1. — Feasible in practice.

Proposition (Nouy and P. 2025)
Under (1) and (2), if |[Vu(X)||3 < 1 a.s., then for all g € G,

7' L1(9) < T(9) < MLa(g) ™7,
with v; < 64 min(3¢,d) and y2 < 2(8d)%. For g* minimizer of Ly on Gy,

I(g") < v jnf J(h)T+% 3 < 1024d min(3¢, d).
€Y1

Results available for s-concave measures (here s = 1/d) and for functions

satisfying a type of Remez inequality.
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Minimizing the surrogate for m = 1

Assumption (2) is satisfied if we take ® : R? — R¥ polynomial such that
V&(X) has full rank a.s, and

Gi = {g x> GTo(x) : G € RE GTE [Vo(X)TVo(X)] G = 1}.

Proposition (Nouy and P. 2025)

min £;(g) = min GTHG,
9€G1 GeRK
GTRG=1

with R :=E [V®(X)TV®(X)] € REXK and

H :=E [Vo(X)" (| Vu(X)[5Ts — Vu(X)Vu(X)")VE(X)] € RFK.
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Extension to m > 1

® With similar reasoning, we define for 1 < j < m,
Ling(9) = E 05 (KB, | )0 (KIB]

with v, j(x) = I Vu(x) and wy j(x) = Hégij(X)ng(x)

Vg-j(x)
® Fixge Gm, h— [’m,j((gb 951 h’ngrl’ T agm)) is quadratic'
Proposition (Nouy and P. 2025)

Under the previous assumptions, for all g € G,,,

1
55 L (9) < T () < 1057 Ly i (g) T8,
with 7, < 29mY*dmin(d, 3¢m), 3o < 27¢d? and

vg,, == sup E [det VA(X)TVA(X)].
h€Gm

v,
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Left plots: train and test estimations of 7 (g)/||ul|r2.
Right plots: train and test estimations of ||u — f o g||p2/||u 2.
Red: quasi-Newton minimization of J.

Cyan: minimization of the surrogate.

Blue: surrogate as initialization of quasi-Newton for 7.
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Numerical experiment
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Blue: surrogate as initialization of quasi-Newton for J.
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© Feature learning

Structured dimension reduction in nonlinear feature spaces



Introduction

Same setting as previous section, but with structured feature maps.
1- Collective setting, Y € ) random variable, u: X x Y — R,

@ (x,y) — f9(x),y).

2- Two variables setting, o C {1,--- ,d}, u: Xy X Xpe — R,

G:x = f(9%(Xa), 9% (Xac)).

3- Multiple variables setting, S C P({1,--- ,d}), u: XqesXa = R,

U X f(gal (Xa1)7 T 7gals‘ (Xa|s\)>'
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Collective dimension reduction

e Goal: for X € X ¢ R?, ¥ € ) independent of X, approximate
uy :==u(-,Y):RT =R, uy € CYX,R)

® Approximation format: use the same feature map for all Y/,

a:(x,y) = f(g(x),y).

® |deal measure of quality of g € G,

Ex(9) = inf E[luy(X,Y) = f(9(X), )]

® Poincaré-based upper bound: apply [Bigoni et al., 2022] to uy,

Ex(9) < Cx1g, Tx(9),  Txlg) = E [Ty Vuy (X)13]
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Truncation in the objective function

® QObserve that

. 1 2 o
(o) 2 Bx | min, By [T Vux (X)1F]| =

® For any x € X, the solution V,,,(x) to the minimization problem is
given by the dominant eigenspace of

M(X) :=Ey [Vuy (X)Vuy (X)] € R¥4.

® Surrogate by truncating the part of Vuy (X) orthogonal to V;,,(X),

Txnl9) = | [Ty )T, 00 Vi (X) 3]
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Properties of the truncated objective function

® Minimizing Jx p, is almost the same as minimizing Jx, as

5 (Tem(9) + 2m) < Txl9) < Tamlo) +

® Jx,m is better suited for our construction of quadratic surrogates,

om(M(X)) o1 ,
1 (Ve(X)? L, ) VIX)IIR | < Txm(9)
quadratic in g
M(X)) oo )
=F om(Vg(X))? ”HVm(X)Vg(X)IIIi

TV
quadratic in g

® Need concentration inequalities on o;(Vg(X))?.
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Surrogate for collective dimension reduction

® Define surrogate in collective setting,

Lamlg) = E [o1(M(X) T, (x) Vo(X) [F] -

Proposition (Nouy and P. 2025)

Under (1) and (2), if o1(M (X)) <1 a.s., then for all g € G,

1
Txm(9) < Vom Lxm(g)TH2im.

® The surrogate is quadratic, L/y’m(GTq)) =Tr (GTHX’mG), with
o = B [0 (M(X))VO(X)(Ig — Vin (X)Vin(X)T) VE(X)]

® Problem: estimating M (x) = Ey [Vuy (x)Vuy (x)7] and dominant
eigenvectors V;,,(x). Requires specific sampling (tensorized).
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Two variables approach

® Goal: for a C {1,---,d}, split X = (X4, Xqe), assume X, L Xe,
approximate u : R - R € C!.

® Approximation format: separated features in X, and X,c ,

U: X f(ga(Xa)ygac(xaC))-

® |deal measure of quality of g € G,,, writes

c

Eg) = o int B [l (X) = (67 (Xa).g° (Xa)]

® Link to the collective setting to use our surrogates 7
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Two variables approach

® Recall that g : x — (9%(Xa), 9% (Xac)).

® Definition of the Poincaré inequality based objective function yields

(&

J(9) = Tx, (9%) + Tx,. (7).

= Exactly the same as two collective settings.

® Inspiring from analysis of HOSVD for Tucker tensor format,

E(g) < Ex, (9%) + Ex,e (9™7) < 28(9).

= Almost the same as two collective settings.

PhD defense (Alexandre PASCO) — 40 / 43



Multiple variables approach

® Consider g : x — (§* (Xay), 5 §¥51(Xag)), S C P({L,---,d}).

® Definition of the Poincaré inequality based objective function yields

T(9) =Y Tx.(9%):

a€eS

= Exactly the same as |S| collective settings.

® Approach from HOSVD of Tucker tensor format and independence of
(Xa)acs yields

E(g) < Ex.(9™) < ISIE(9).

a€sS

= Almost the same as |S| collective settings.
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Numerical experiment: collective setting
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10 10 .
10- 107 107 10-2
107 10~
108 10
10 4 10 10 10~
10- 10
0 e B -
R 0" 3 70050 TN 70050 [ 0
Training sample size N*roin Training sample size Nt7oir

u(x,y) = Ez(xTQkx)2 sin(;r];y),
X ~U(]-1,1P), Y~U]-1,1), p=m=S3.

50%, 90% and 100% quantiles over 20 realizations.
Left plots: train and test estimations of J(g)/| v 2.
Right plots: train and test estimations of ||[u — f o g||2/]|ul 72
Red: quasi-Newton minimization of J.

Cyan: minimization of the surrogate.
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Conclusion

Conclusion:

® Quadratic surrogate to the non-convex objective function arising
from gradient-based dimension reduction.

® Quasi-optimality results for our surrogates, especially for m = 1.
® Extension to the collective dimension reduction setting.
® Correspondence between separated features and collective setting.

Perspectives:
® Other classes of feature maps (e.g. diffeomorphisms, low-rank).

® Extensive numerical tests.
® Applications to compression of fast-to-evaluate functions u.

® Extension to Bayesian inverse problems.
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Thank you for your attention.
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