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PhD thesis supervisor: Professor Anthony Nouy.



1 Introduction

2 Model order reduction

3 Feature learning



Introduction

Costly to evaluate u : X → U , parameter set X ⊂ Rd, Hilbert space U .

Offline: construct surrogate û : X → U . Online: many evaluations of û.

Model Order Reduction Feature learning

• High-dim: dim(U) = n≫ 1.

• “Low-dim” Vr approximating

M := {u(x) : x ∈ X} ⊂ U.

• Linear case: reduced basis
[Veroy et al., 2003],

û(x) =

r∑

i=1

ai(x)v
(i), v(i) ∈ U.

• High-dim: dim(X ) = d≫ 1.

• Approximate u(x) by a function
of g(x) ∈ Rm, m≪ d.

• Linear case: ridge function
[Logan and Shepp, 1975],

û(x) = f(GTx),

G ∈ Rd×m, f : Rm → U.
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Introduction

Parameter-dependent high-dimensional linear equation,

∀x ∈ X , A(x)u(x) = b(x).

Inverse problem
Dictionary MOR

• x is unknown and “omitted”.

• Linear measurements

z = (ℓ1(u)), · · · , ℓm(u))).

• Dictionary DK = {v(i)}1≤i≤K ,

û(x) ∼= û(z) =

r∑

i=1

aαi(z)v
(αi).

Forward problem
Linear MOR

• x is known.

• Reduced space Ur is known.

• A(x) is ill-conditioned.

• Preconditioner for better
Galerkin projection and error
estimation.

PhD defense (Alexandre PASCO) — 2 / 43



1 Introduction

2 Model order reduction
Dictionary-based model reduction for state estimation
Preconditioners for model order reduction by interpolation and
random sketching of operators (with O. Balabanov)

3 Feature learning



Inverse problem with MOR

• Linear MOR [Maday et al., 2015, Binev et al., 2017]: PBDW ûUr(z),

dim(Ur) = r ≤ m, dist(Ur,M) ≤ εr, ∥u− ûUr(z)∥U ≤ µrεr.

+ Online efficient. − Limited by linear Kolmogorov width.

• Piecewise linear MOR [Cohen et al., 2022]:

LN
r := {U (i)

r : 1 ≤ i ≤ N}, dist(
⋃

1≤i≤N

U (i)
r ,M) ≤ εr.

Select V ∗(z) using S(·,M) surrogate to dist(·,M),

min
V ∈LN

r

S(ûV (z),M), S(v,M) := min
y∈X

∥A(y)v − b(y)∥U ′ .

+ Near optimal selection for inf-sup stable A.
+ Nonlinear width [Temlyakov, 1998].
+ Parameter separable ⇒ Online efficient.
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Computing the selection criterion S

• Assume parameter separability,

A(x) =

d∑

q=1

xqAq and b(x) = b0.

• Computing S is a linear least-squares problem [Cohen et al., 2022],

S(v,M) = min
y∈P

∥G(v)y − b0∥U ′ , G(v) := (A1v, · · · , AmAv).

• Offline: normal equations cost in total O(d2r2Nn).
+ Online efficiency.
− Offline cost may be prohibitive.
− Sensitivity to round-off errors.

• Random sketching [Woodruff, 2014, Martinsson and Tropp, 2020] helps
mitigate these problems [Balabanov and Nouy, 2019].
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Subspace embeddings with random sketching

• Θ : U → Rk is a ϵ-subspace embedding for a subspace V if

∀v ∈ V,
∣∣∥Θ(v)∥22 − ∥v∥2U

∣∣ ≤ ϵ∥v∥2

• For Θ with k = O(ϵ−2(dim(V ) + log(δ−1))) rows as independent
Gaussian vectors with covariance depending on U ,

P [Θ is subspace embedding for V ] ≥ 1− δ.

Θ is an oblivious subspace embedding.

• Similar for structured or sparse Θ with additional log terms.
→ Computing Θ(v) costs n log(n).
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Sketched selection criterion

• With parameter separability and structured Θ,

SΘ(v,M) := min
y∈X

∥Θ(A(y)v − b0)∥U ′ = min
y∈X

∥GΘ(v)y −Θ(b0)∥2,

GΘ(v) := (ΘA1v, · · · ,ΘAdv) ∈ Rk×d.

• Offline: SΘ costs O(dr log(n)Nn), while S costs O(d2r2Nn) .
→ Lower offline cost.
→ More robust to round-off errors.

• Online: SΘ costs O(kd2), while S costs O(d3).

• Near optimal selection is preserved with high-probability and small k.

Proposition (Nouy and P. 2024)

With k = O(ϵ−2 (d+ log(δ−1))), for any v ∈ U ,

P
[√

1− ϵ S(v,P) ≤ SΘ(v,P) ≤
√
1 + ϵ S(v,P)

]
≥ 1− δ.
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Inverse problem with dictionary-based MOR

• Forward problem with dictionary-based MOR considered in
[Kaulmann and Haasdonk, 2013, Balabanov and Nouy, 2021b].

• Given a dictionary DK = {v(1), · · · , v(K)} ⊂ U , consider

Lr(DK) :=
{
V ⊂ span{DK} : dim(V ) ≤ r

}
.

• Online adaptive library Lr(z) ⊂ Lr(DK) from greedy-type algorithm.

• Offline cost:

With random sketching

O
(
mKn+ dK log(n)n

)
.

VS
With normal equation

O
(
mKn+ d2K2n

)
.

• Online cost: considering k = O(d),

With random sketching

O
(
m2K +md2K + d3K

)
.

VS
With normal equation

O
(
m2K +m2d2K + d3K

)
.
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Numerical experiment: parametrized advection diffusion

n ∼ 150 000 and





−0.01∆u+ V(x) · ∇u =
100

π
1ΩS

in Ω,

u = 0 on ΓD,

n · ∇u = 0 on ΓN ,

V(x)(y) =
5∑

i=1

1

∥y − y(i)∥
(
xier(y

(i)) + xi+5eθ(y
(i))

)

Ω

ΩS

ΓD

ΓN

PhD defense (Alexandre PASCO) — 8 / 43



Numerical experiment: parametrized advection diffusion
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Figure: Relative H1
0 errors on 500 test snapshots, growing dictionary sizes K,

observations m ∈ {31, 61, 101}. Full line is the mean relative error. Dotted line is
the maximal relative error. Blue is selection in L(w) with SΘ. Red is
minV ∈LPOD ∥u− ûV ∥U . Cyan is minV ∈L(w) ∥u− ûV ∥U .
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Conclusion

Conclusion:

• Sketched selection criterion for piecewise-linear MOR.

• Dictionary-based MOR, tractable with random sketching.

Perspectives:

• Fix observations (ℓi)1≤i≤m and construct suited dictionary DK .

• Fix DK and construct suited (ℓi)1≤i≤m (optimal information).

• Incorporate SΘ in the adaptive construction of Lr(z).
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Introduction

• Forward problem: parameter x ∈ X is known.

• MOR: Ur is given. Compute ur(x) ∈ Ur via Galerkin projection,

∀v ∈ Ur, ⟨v,A(x)ur(x)⟩ = ⟨v, b(x)⟩,

and estimate error with α̂(A(x))−1∥A(x)ur(x)− b(x)∥U ′ .

• Problem: ill-conditioned operator A(x).
− ur(x) may be far from ΠUru(x).
− Residual-based error estimator may be not efficient.

• Goal: construct P (x) : U ′ → U a linear approximation of A(x)−1

[Zahm and Nouy, 2016, Balabanov and Nouy, 2021a],

P (x) ∈ span{Y1, · · · , Yp}, Yi = A(xi)
−1.
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Quality measure: general purpose in operator norm

• General purpose: discrepancy in operator norm ∥I − PA∥U,U .

• Bound on the inf-sup constants of PA,

1− ∥I − PA∥U,U ≤ σn(PA) ≤ σ1(PA) ≤ 1 + ∥I − PA∥U,U .

• Preconditioned residual estimator ∥PAv − Pb∥U ,

∥PAv − Pb∥U
1 + ∥I − PA∥U,U

≤ ∥u− v∥U ≤ ∥PAv − Pb∥U
1− ∥I − PA∥U,U

.

• Problem: require ∥I − PA∥U,U < 1, but online computation and
optimization of P 7→ ∥I − PA∥U,U is untractable.
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Quality measure: general purpose in HS norm

• Alternative: Hilbert-Schmidt norm ∥I −PA∥HS(U,U) ≥ ∥I −PA∥U,U .

• Minimization of the discrepancy is a least-squares problem,

min
P∈span{Y1,··· ,Yp}

∥I − PA∥HS(U,U).

• Problem 1: fixed P , evaluating ∥I − PA∥HS(U,U) is (very) costly.
→ [Zahm and Nouy, 2016] used random estimator.

- Problem 2: HS norm can be much larger than operator norm,

1√
dim(U)

∥ · ∥HS(U,U) ≤ ∥ · ∥U,U ≤ ∥ · ∥HS(U,U).

→ Seminorms tailored to MOR.

PhD defense (Alexandre PASCO) — 13 / 43



Quality measure: MOR purpose in operator seminorm

• MOR purpose: discrepancy in operator seminorms,

∥I − PA∥U,Ur := ∥ΠUr(I − PA)∥U,U .

• For ur preconditioned Galerkin projection on Ur,

∥u− ur∥U ≤ 1

1− ∥I − PA∥U,Ur

∥u−ΠUru∥U ,

• Computable with (v(i))1≤i≤r o.n.b of Ur,

∥I − PA∥2U,Ur
= σ1

(
(⟨v(i), (I − PA)(I − PA)T v(j)⟩U )1≤i,j≤r

)
.

+ Online efficient using normal equation.
− Offline is costly and sensitive to round-off errors.
− Minimization over P is challenging.
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Quality measure: MOR purpose in HS seminorm

• Assume given Um ⊃ Ur, r ≤ m≪ n, and for some τ ∈ (0, 1),

∥u−ΠUmu∥U ≤ τ∥u− ur∥U .

• A posteriori error estimator,

∥ΠUmP (Aur − b)∥U
1 + (1 + τ)∥I − PA∥U,Um

≤ ∥u− ur∥U

≤ ∥ΠUmP (Aur − b)∥U√
1− τ2 − (1 + τ)∥I − PA∥U,Um

.

• Ur ⊂ Um thus ∥ · ∥U,Ur ≤ ∥ · ∥U,Um .
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Quality measure: MOR purpose in HS seminorm

• Alternative: Hilbert-Schmidt seminorm,

∥I − PA∥HS(U,Um) := ∥ΠUm(I − PA)∥HS(U,U),

• HS seminorms are almost equivalent to operator seminorms,

1√
m
∥ · ∥HS(U,Um) ≤ ∥ · ∥U,Um ≤ ∥ · ∥HS(U,Um).

• Computable with (v(i))1≤i≤m o.n.b of Um,

∥I − PA∥2HS(U,Um) =

m∑

i=1

∥(I − PA)T v(i)∥2U ,

+ Online efficient using normal equation.
− Offline is costly and sensitive to round-off errors.
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Random sketching for HS operators

• Main challenge: Yi are inverses of (sparse) matrices, only accessible
via matrix-vector products.

• Random embedding: consider Ω, Σ and Γ “classical” random
sketches, with sketching dimension k, then for an HS operator Y ,

Θ(Y ) := Γvec(ΩY ΣT ) ∈ Rk.

→ Computed with k matrix-vector products.
→ Adaptable for seminorms.

• Oblivious subspace embedding with k = O(ϵ−2(d+ log(n/δ))): for
all d-dimensional vector subspace Y of HS operators,

P
[
∀Y ∈ Y,

∣∣∣∥Θ(Y )∥22 − ∥Y ∥2HS

∣∣∣ ≤ ϵ∥Y ∥2HS

]
≥ 1− δ.
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Practical aspects

• Assume parameter separability,

A(x) =

d∑

q=1

xqAq.

• Construct P (x) by solving the sketched least-squares problem,

min
P∈span{Y1,··· ,Yp}

∥Θ(I − PA(x))∥2 = min
a∈Rp

∥Θ(I)−WΘ(x)a∥2,

WΘ(x) ∈ Rk×d small matrix with parameter separable columns.

• If b is parameter separable, then preconditioned Galerkin system and
preconditioned error estimator are also parameter separable.

• Offline cost for HS(U,Um): O((k ∧m)pd log(n)n).
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Numerical example

Forgive me for this Forgive me for this, I could
not top align the figures
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0

Figure: [Balabanov and Nouy, 2021b] Wave scattering in 2D with a perfect
scatterer covered in an invisibility cloak composed of layers of homogeneous
isotropic materials. Left: Geometry of the problem. Right: real part of random
snapshot.
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Numerical example
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Figure: Quantiles on test sets (90% continuous, 100% dotted) for the
preconditioned Galerkin projection, along the greedy construction of the
preconditioner space. Left: quasi optimality. Middle: accuracy of error estimator.
Right: absolute error to solution. Three sketched greedy criterions: red is
HS(Um, Um), blue is HS(U,Um), cyan is weighted sum.
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Conclusion

Conclusion:

• Random sketching method for HS operators (generic approach).

• Construction of preconditioner for MOR purpose.

• Offline-online efficiency.

Perspectives for MOR:

• Greedy algorithm constructing (Yi)1≤i≤p and Ur at the same time, as
in [Zahm and Nouy, 2016].

• Nonlinear construction of P (x) (e.g., dictionary-based).

Perspectives for random sketching:

• Sketching of operators for other settings (e.g., eigenvalue problems,
domain decomposition).
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Introduction

u1(x) = sin(x1 + 3x2)

Univariate in linear feature.

u2(x) = sin(x21 + x22)

Univariate in nonlinear feature.
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Introduction: gradient-based dimension reduction

• X ∈ X ⊂ Rd a random vector, u : X → U = R, d≫ 1, u ∈ C1.

• Classical tools require sample size exponential in d.
→ Curse of dimensionality.

• Goal: build a feature map g : X → Rm, m≪ d, so that u is well
approximated by

û : x 7→ f(g(x))

for some low-dimensional profile function f : Rm → R.

• Ideal measure of quality of g,

E(g) := inf
f :Rm→R

E
[
|u(X)− f ◦ g(X)|2

]
.

• Given: few costly point evaluations (x(i), u(x(i)),∇u(x(i)))1≤i≤ns .
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Examples of feature maps

Feature maps considered in gradient-based dimension reduction.

• [Constantine et al., 2014]
Linear g(x) = GTx with G ∈ Rd×m.

• [Bigoni et al., 2022, Romor et al., 2022]
g(x) = GTΦ(x) from vector space with basis Φ : Rd → RK and
G ∈ RK×m with K ≥ d. Typically Φ polynomial.

• [Verdière et al., 2025, Zhang et al., 2019]
Diffeomorphism-based g(x) = (ψ1(x), · · · , ψm(x))T with
ψ : Rd → Rd a diffeomorphism.
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Upper-bound using Poincaré inequalities

• For g : X → Rm and f : Rm → R using the chain rule,

u = f ◦ g =⇒ ∇u(x) = ∇g(x)∇f(g(x)),
=⇒ ∇u(x) ∈ span{∇g1(x), · · · ,∇gm(x)} ⊂ Rd,

• We search for g ∈ Gm such that ∇g(x) is aligned with ∇u(x), for
example by minimizing the objective function

J (g) := E
[
∥∇u(X)∥22

]
− E

[
∥Π∇g(X)∇u(X)∥22

]
.

Proposition ([Bigoni et al., 2022])

If ∇g has full matrix rank everywhere,

E(g) ≤
(
sup
h∈Gm

sup
z∈h(suppX)

CX|h(X)=z

)
J (g),

with CX|h(X)=z the Poincaré constant associated to the conditional
measure X|h(X) = z.
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On the objective function

J (g) = E
[
∥∇u(X)∥22

]
− E

[
∥Π∇g(X)∇u(X)∥22

]
.

• Linear features: g(x) = GTx with GTG = Im, then Π∇g(X) = GGT ,

thus G 7→ J (GT ) is quadratic and minimized by the dominant
eigenvectors of

E
[
∇u(X)∇u(X)T

]
∈ Rd×d.

• Nonlinear features: g(x) = GTΦ(x) with fixed Φ : Rd → RK ,

Π∇g(X) = ∇Φ(X)G(GT∇Φ(X)T∇Φ(X)G)−1GT∇Φ(X)T ,

thus J is not convex anymore and no explicit minimizer is known.
→ Design quadratic surrogates.

PhD defense (Alexandre PASCO) — 26 / 43



Surrogate for m = 1

• With m = 1 the objective function writes

J (g) = E
[
∥∇u(X)∥22 −

(∇g(X)T∇u(X))2

∥∇g(X)∥22

]

= E


 1

∥∇g(X)∥22
∥∇u(X)∥22∥Π⊥

∇u(X)∇g(X)∥22︸ ︷︷ ︸
Quadratic wrt g


 .

• Control on ∥∇g(X)∥22 yields control on J (g) with a quadratic
surrogate,

L1(g) := E
[
∥∇u(X)∥22∥Π⊥

∇u(X)∇g(X)∥22
]
.

• Uniform lower bound on ∥∇g(X)∥22 not available (e.g. polynomials).
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Deviation inequalities for polynomials

Control ∥∇g(X)∥22 in terms of deviation inequalities, i.e. the decay of

P
[
∥∇g(X)∥22 ≤ β−1

]
︸ ︷︷ ︸

Small deviations

, P
[
∥∇g(X)∥22 ≥ β

]
︸ ︷︷ ︸

Large deviations

as β → +∞.

Proposition (Direct consequence of [Fradelizi, 2009])

If X is uniformly distributed on a convex set and h : Rd → R is polynomial
with total degree at most k, then for all β > 0,

P
[
|h(X)| ≤ β−1

]
≲ β−1/k.

• Generalized to s-concave measures (here s = 1/d).

• Generalized to h satisfying a Remez inequality.

• Constants behind ≲ involve moments of |h(X)|.
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Analysis of the surrogate for m = 1

Assumptions

(1) X is uniformly distributed on a convex set.

(2) Every g ∈ G1 is a non-constant polynomial of total degree at most
ℓ+ 1 such that E

[
∥∇g(X)∥22

]
= 1. → Feasible in practice.

Proposition (Nouy and P. 2025)

Under (1) and (2), if ∥∇u(X)∥22 ≤ 1 a.s., then for all g ∈ Gm,

γ−1
2 L1(g) ≤ J (g) ≤ γ1L1(g)

1
1+2ℓ ,

with γ1 ≤ 64min(3ℓ, d) and γ2 ≤ 2(8d)2ℓ. For g∗ minimizer of L1 on G1,

J (g∗) ≤ γ3 inf
h∈G1

J (h)
1

1+2ℓ , γ3 ≤ 1024dmin(3ℓ, d).

Results available for s-concave measures (here s = 1/d) and for functions
satisfying a type of Remez inequality.
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Minimizing the surrogate for m = 1

Assumption (2) is satisfied if we take Φ : Rd → RK polynomial such that
∇Φ(X) has full rank a.s, and

G1 :=
{
g : x 7→ GTΦ(x) : G ∈ RK , GTE

[
∇Φ(X)T∇Φ(X)

]
G = 1

}
.

Proposition (Nouy and P. 2025)

min
g∈G1

L1(g) = min
G∈RK

GTRG=1

GTHG,

with R := E
[
∇Φ(X)T∇Φ(X)

]
∈ RK×K and

H := E
[
∇Φ(X)T (∥∇u(X)∥22Id −∇u(X)∇u(X)T )∇Φ(X)

]
∈ RK×K .
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Extension to m > 1

• With similar reasoning, we define for 1 ≤ j ≤ m,

Lm,j(g) := E
[
∥vg,j(X)∥22∥Π⊥

vg,j(X)wg,j(X)∥22
]
,

with vg,j(x) := Π⊥
∇g−j(x)

∇u(x) and wg,j(x) := Π⊥
∇g−j(X)∇gj(x)

• Fix g ∈ Gm, h 7→ Lm,j((g1, · · · , gj−1, h, gj+1, · · · , gm)) is quadratic.

Proposition (Nouy and P. 2025)

Under the previous assumptions, for all g ∈ Gm,

γ̃−1
2 Lm,j(g) ≤ J (g) ≤ γ̃1ν

− 1
1+2ℓm

Gm
Lm,j(g)

1
1+2ℓm ,

with γ̃1 ≤ 29m1/4ℓdmin(d, 3ℓm), γ̃2 ≤ 27ℓd2ℓ and

νGm := sup
h∈Gm

E
[
det∇h(X)T∇h(X)

]
.
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Numerical experiment m = 1

50 75 100 125 150 250 500

10−2

10−1

Training sample size N train
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u(x) := exp(
1

d

d∑

i=1

sin(xi)e
cos(xi)), X ∼ U(]− π

2
,
π

2
[8), m = 1.

50%, 90% and 100% quantiles over 20 realizations.
Left plots: train and test estimations of J (g)/∥u∥L2 .

Right plots: train and test estimations of ∥u− f ◦ g∥L2/∥u∥L2 .
Red: quasi-Newton minimization of J .
Cyan: minimization of the surrogate.

Blue: surrogate as initialization of quasi-Newton for J .
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Numerical experiment m = 2
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[8), m = 2.

50%, 90% and 100% quantiles over 20 realizations.
Left plots: train and test estimations of J (g)/∥u∥L2 .

Right plots: train and test estimations of ∥u− f ◦ g∥L2/∥u∥L2 .
Red: quasi-Newton minimization of J .
Cyan: minimization of the surrogate.

Blue: surrogate as initialization of quasi-Newton for J .
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Introduction

Same setting as previous section, but with structured feature maps.

1- Collective setting, Y ∈ Y random variable, u : X × Y → R,

û : (x, y) 7→ f(g(x), y).

2- Two variables setting, α ⊂ {1, · · · , d}, u : Xα ×Xαc → R,

û : x 7→ f(gα(xα), g
αc
(xαc)).

3- Multiple variables setting, S ⊂ P({1, · · · , d}), u : ×α∈SXα → R,

û : x 7→ f(gα1(xα1), · · · , gα|S|(xα|S|)).
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Collective dimension reduction

• Goal: for X ∈ X ⊂ Rd, Y ∈ Y independent of X, approximate

uY := u(·, Y ) : Rd → R, uY ∈ C1(X ,R)

• Approximation format: use the same feature map for all Y ,

û : (x, y) 7→ f(g(x), y).

• Ideal measure of quality of g ∈ Gm,

EX (g) := inf
f :Rm×Y→R

E
[
|uY (X, Y )− f(g(X), Y )|2

]
.

• Poincaré-based upper bound: apply [Bigoni et al., 2022] to uY ,

EX (g) ≤ CX|Gm
JX (g), JX (g) := E

[
∥Π⊥

∇g(X)∇uY (X)∥22
]
.
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Truncation in the objective function

• Observe that

JX (g) ≥ EX

[
min

V (X)∈Rd×m
EY

[
∥Π⊥

V (X)∇uY(X)∥22
]]

:= εm.

• For any x ∈ X , the solution Vm(x) to the minimization problem is
given by the dominant eigenspace of

M(X) := EY

[
∇uY (X)∇uY (X)T

]
∈ Rd×d.

• Surrogate by truncating the part of ∇uY (X) orthogonal to Vm(X),

JX ,m(g) := E
[
∥Π⊥

∇g(X)ΠVm(X)∇uY (X)∥22
]
.
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Properties of the truncated objective function

• Minimizing JX ,m is almost the same as minimizing JX , as

1

2
(JX ,m(g) + εm) ≤ JX (g) ≤ JX ,m(g) + εm.

• JX ,m is better suited for our construction of quadratic surrogates,

E


 σm(M(X))

σ1(∇g(X))2
∥Π⊥

Vm(X)∇g(X)∥2F︸ ︷︷ ︸
quadratic in g


 ≤ JX ,m(g)

≤ E


 σ1(M(X))

σm(∇g(X))2
∥Π⊥

Vm(X)∇g(X)∥2F︸ ︷︷ ︸
quadratic in g


 .

• Need concentration inequalities on σi(∇g(X))2.
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Surrogate for collective dimension reduction

• Define surrogate in collective setting,

LX ,m(g) := E
[
σ1(M(X))∥Π⊥

Vm(X)∇g(X)∥2F
]
.

Proposition (Nouy and P. 2025)

Under (1) and (2), if σ1(M(X)) ≤ 1 a.s., then for all g ∈ Gm,

JX ,m(g) ≤ γGmLX ,m(g)
1

1+2ℓm .

• The surrogate is quadratic, LX ,m(GTΦ) = Tr
(
GTHX ,mG

)
, with

HX ,m = E
[
σ1(M(X))∇Φ(X)(Id − Vm(X)Vm(X)T )∇Φ(X)T

]
.

• Problem: estimating M(x) = EY

[
∇uY (x)∇uY (x)T

]
and dominant

eigenvectors Vm(x). Requires specific sampling (tensorized).
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Two variables approach

• Goal: for α ⊂ {1, · · · , d}, split X = (Xα,Xαc), assume Xα ⊥⊥ Xαc ,
approximate u : Rd → R ∈ C1.

• Approximation format: separated features in Xα and Xαc ,

û : x 7→ f(gα(xα), g
αc
(xαc)).

• Ideal measure of quality of g ∈ Gm writes

E(g) = inf
f :Rmα×Rmαc→R

E
[
|uY (X)− f(gα(Xα), g

αc
(Xαc))|2

]
.

• Link to the collective setting to use our surrogates ?

PhD defense (Alexandre PASCO) — 39 / 43



Two variables approach

• Recall that g : x 7→ (gα(xα), g
αc
(xαc)).

• Definition of the Poincaré inequality based objective function yields

J (g) = JXα(g
α) + JXαc (g

αc
).

⇒ Exactly the same as two collective settings.

• Inspiring from analysis of HOSVD for Tucker tensor format,

E(g) ≤ EXα(g
α) + EXαc (g

αc
) ≤ 2E(g).

⇒ Almost the same as two collective settings.
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Multiple variables approach

• Consider g : x 7→ (gα1(xα1), · · · , gα|S|(xα|S|)), S ⊂ P({1, · · · , d}).

• Definition of the Poincaré inequality based objective function yields

J (g) =
∑

α∈S
JXα(g

α).

⇒ Exactly the same as |S| collective settings.

• Approach from HOSVD of Tucker tensor format and independence of
(Xα)α∈S yields

E(g) ≤
∑

α∈S
EXα(g

α) ≤ |S|E(g).

⇒ Almost the same as |S| collective settings.
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Numerical experiment: collective setting
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ĴX (g)1/2 / ∥u∥L2

50 75 100 125 150 250250
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Training sample size N train

JX (g)1/2 / ∥u∥L2

50 75 100 125 150 250250
10−4

10−3

10−2

10−1

100

Training sample size N train
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u(x, y) :=
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k=1

(xTQkx)
2 sin(
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2p
y),

X ∼ U(]− 1, 1[8), Y ∼ U(]− 1, 1[), p = m = 3.

50%, 90% and 100% quantiles over 20 realizations.
Left plots: train and test estimations of J (g)/∥u∥L2 .

Right plots: train and test estimations of ∥u− f ◦ g∥L2/∥u∥L2 .
Red: quasi-Newton minimization of J .
Cyan: minimization of the surrogate.
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Conclusion

Conclusion:
• Quadratic surrogate to the non-convex objective function arising
from gradient-based dimension reduction.

• Quasi-optimality results for our surrogates, especially for m = 1.

• Extension to the collective dimension reduction setting.

• Correspondence between separated features and collective setting.

Perspectives:
• Other classes of feature maps (e.g. diffeomorphisms, low-rank).

• Extensive numerical tests.

• Applications to compression of fast-to-evaluate functions u.

• Extension to Bayesian inverse problems.
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Thank you for your attention.
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