

Nonlinear dimension reduction for high dimensional approximation and inverse problems.

Alexandre PASCO

Centrale Nantes, Nantes Université, France
PhD thesis supervisor: Professor Anthony Nouy.

Laboratoire de
Mathématiques
Jean
Leray
UMR 6629 - Nantes

① Introduction

② Model order reduction

③ Feature learning

Introduction

Costly to evaluate $u : \mathcal{X} \rightarrow U$, parameter set $\mathcal{X} \subset \mathbb{R}^d$, Hilbert space U .

Offline: construct surrogate $\hat{u} : \mathcal{X} \rightarrow U$. **Online**: many evaluations of \hat{u} .

Model Order Reduction

- High-dim: $\dim(U) = n \gg 1$.
- “Low-dim” V_r approximating $\mathcal{M} := \{u(\mathbf{x}) : \mathbf{x} \in \mathcal{X}\} \subset U$.
- Linear case: reduced basis [Veroy et al., 2003],

$$\hat{u}(\mathbf{x}) = \sum_{i=1}^r a_i(\mathbf{x}) v^{(i)}, \quad v^{(i)} \in U.$$

Feature learning

- High-dim: $\dim(\mathcal{X}) = d \gg 1$.
- Approximate $u(\mathbf{x})$ by a function of $g(\mathbf{x}) \in \mathbb{R}^m$, $m \ll d$.
- Linear case: ridge function [Logan and Shepp, 1975],

$$\hat{u}(\mathbf{x}) = f(G^T \mathbf{x}), \quad G \in \mathbb{R}^{d \times m}, \quad f : \mathbb{R}^m \rightarrow U.$$

① Introduction

② Model order reduction

Dictionary-based model reduction for state estimation

Preconditioners for model order reduction by interpolation and random sketching of operators (with O. Balabanov)

③ Feature learning

Introduction

Parameter-dependent high-dimensional linear equation,

$$\forall \mathbf{x} \in \mathcal{X}, \quad A(\mathbf{x})u(\mathbf{x}) = b(\mathbf{x}).$$

Inverse problem Dictionary MOR

- \mathbf{x} is unknown and “omitted”.
- Linear measurements

$$\mathbf{z} = (\ell_1(u)), \dots, \ell_m(u)).$$

- Dictionary $\mathcal{D}_K = \{v^{(i)}\}_{1 \leq i \leq K}$,

$$\hat{u}(\mathbf{x}) \cong \hat{u}(\mathbf{z}) = \sum_{i=1}^r a_{\alpha_i}(\mathbf{z}) v^{(\alpha_i)}.$$

Forward problem Linear MOR

- \mathbf{x} is known.
- Reduced space U_r is known.
- $A(\mathbf{x})$ is ill-conditioned.
- **Preconditioner** for better Galerkin projection and error estimation.

① Introduction

② Model order reduction

Dictionary-based model reduction for state estimation

Preconditioners for model order reduction by interpolation and random sketching of operators (with O. Balabanov)

③ Feature learning

Inverse problem with MOR

- Linear MOR [Maday et al., 2015, Binev et al., 2017]: PBDW $\hat{u}_{U_r}(\mathbf{z})$,

$$\dim(U_r) = r \leq m, \quad \text{dist}(U_r, \mathcal{M}) \leq \varepsilon_r, \quad \|u - \hat{u}_{U_r}(\mathbf{z})\|_U \leq \mu_r \varepsilon_r.$$

+ Online efficient. – Limited by linear Kolmogorov width.

- Piecewise linear MOR [Cohen et al., 2022]:

$$\mathcal{L}_r^N := \{U_r^{(i)} : 1 \leq i \leq N\}, \quad \text{dist}\left(\bigcup_{1 \leq i \leq N} U_r^{(i)}, \mathcal{M}\right) \leq \varepsilon_r.$$

Select $V^*(\mathbf{z})$ using $\mathcal{S}(\cdot, \mathcal{M})$ surrogate to $\text{dist}(\cdot, \mathcal{M})$,

$$\min_{V \in \mathcal{L}_r^N} \mathcal{S}(\hat{u}_V(\mathbf{z}), \mathcal{M}), \quad \mathcal{S}(v, \mathcal{M}) := \min_{\mathbf{y} \in \mathcal{X}} \|A(\mathbf{y})v - b(\mathbf{y})\|_{U'}.$$

+ Near optimal selection for inf-sup stable A .
+ Nonlinear width [Temlyakov, 1998].
+ Parameter separable \Rightarrow Online efficient.

Computing the selection criterion \mathcal{S}

- Assume parameter separability,

$$A(\mathbf{x}) = \sum_{q=1}^d x_q A_q \quad \text{and} \quad b(\mathbf{x}) = b_0.$$

- Computing \mathcal{S} is a linear least-squares problem [Cohen et al., 2022],

$$\mathcal{S}(v, \mathcal{M}) = \min_{\mathbf{y} \in \mathcal{P}} \|G(v)\mathbf{y} - b_0\|_{U'}, \quad G(v) := (A_1 v, \dots, A_{m_A} v).$$

- Offline: normal equations cost in total $\mathcal{O}(d^2 r^2 N n)$.
 - + Online efficiency.
 - **Offline cost** may be prohibitive.
 - Sensitivity to **round-off errors**.
- **Random sketching** [Woodruff, 2014, Martinsson and Tropp, 2020] helps mitigate these problems [Balabanov and Nouy, 2019].

Subspace embeddings with random sketching

- $\Theta : U \rightarrow \mathbb{R}^k$ is a **ϵ -subspace embedding** for a subspace V if

$$\forall v \in V, \quad \left| \|\Theta(v)\|_2^2 - \|v\|_U^2 \right| \leq \epsilon \|v\|^2$$

- For Θ with $k = \mathcal{O}(\epsilon^{-2}(\dim(V) + \log(\delta^{-1})))$ rows as independent **Gaussian** vectors with covariance depending on U ,

$$\mathbb{P} [\Theta \text{ is subspace embedding for } V] \geq 1 - \delta.$$

Θ is an **oblivious subspace embedding**.

- Similar for **structured** or **sparse** Θ with additional log terms.
→ Computing $\Theta(v)$ costs $n \log(n)$.

Sketched selection criterion

- With parameter separability and **structured** Θ ,

$$\mathcal{S}^\Theta(v, \mathcal{M}) := \min_{\mathbf{y} \in \mathcal{X}} \|\Theta(A(\mathbf{y})v - b_0)\|_{U'} = \min_{\mathbf{y} \in \mathcal{X}} \|G^\Theta(v)\mathbf{y} - \Theta(b_0)\|_2,$$
$$G^\Theta(v) := (\Theta A_1 v, \dots, \Theta A_d v) \in \mathbb{R}^{k \times d}.$$

- Offline: \mathcal{S}^Θ costs $\mathcal{O}(dr \log(n)Nn)$, while \mathcal{S} costs $\mathcal{O}(d^2r^2Nn)$.
 - Lower offline cost.
 - More robust to round-off errors.
- Online: \mathcal{S}^Θ costs $\mathcal{O}(kd^2)$, while \mathcal{S} costs $\mathcal{O}(d^3)$.
- Near optimal selection is preserved with high-probability and small k .

Proposition (Nouy and P. 2024)

With $k = \mathcal{O}(\epsilon^{-2} (d + \log(\delta^{-1})))$, for any $v \in U$,

$$\mathbb{P} [\sqrt{1 - \epsilon} \mathcal{S}(v, \mathcal{P}) \leq \mathcal{S}^\Theta(v, \mathcal{P}) \leq \sqrt{1 + \epsilon} \mathcal{S}(v, \mathcal{P})] \geq 1 - \delta.$$

Inverse problem with dictionary-based MOR

- Forward problem with dictionary-based MOR considered in [Kaulmann and Haasdonk, 2013, Balabanov and Nouy, 2021b].
- Given a dictionary $\mathcal{D}_K = \{v^{(1)}, \dots, v^{(K)}\} \subset U$, consider

$$\mathcal{L}_r(\mathcal{D}_K) := \left\{ V \subset \text{span}\{\mathcal{D}_K\} : \dim(V) \leq r \right\}.$$

- Online adaptive library $\mathcal{L}_r(\mathbf{z}) \subset \mathcal{L}_r(\mathcal{D}_K)$ from greedy-type algorithm.
- **Offline cost:**

With random sketching	VS	With normal equation
$\mathcal{O}(mKn + dK \log(n)n)$.		$\mathcal{O}(mKn + d^2K^2n)$.

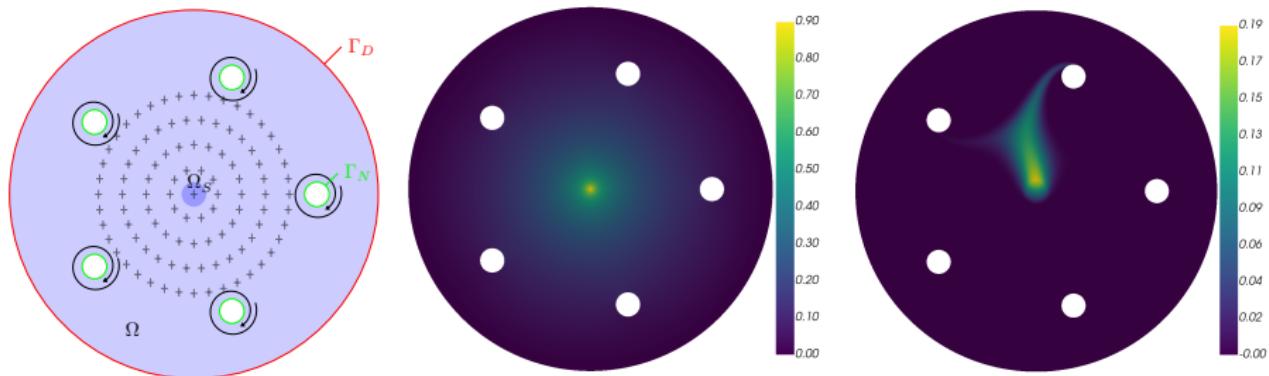
- **Online cost:** considering $k = \mathcal{O}(d)$,

With random sketching	VS	With normal equation
$\mathcal{O}(m^2K + md^2K + d^3K)$.		$\mathcal{O}(m^2K + m^2d^2K + d^3K)$.

Numerical experiment: parametrized advection diffusion

$$n \sim 150\,000 \quad \text{and} \quad \begin{cases} -0.01\Delta u + \mathcal{V}(\mathbf{x}) \cdot \nabla u = \frac{100}{\pi} \mathbb{1}_{\Omega_S} & \text{in } \Omega, \\ u = 0 & \text{on } \Gamma_D, \\ n \cdot \nabla u = 0 & \text{on } \Gamma_N, \end{cases}$$

$$\mathcal{V}(\mathbf{x})(y) = \sum_{i=1}^5 \frac{1}{\|y - y^{(i)}\|} \left(\mathbf{x}_i e_r(y^{(i)}) + \mathbf{x}_{i+5} e_\theta(y^{(i)}) \right)$$



Numerical experiment: parametrized advection diffusion

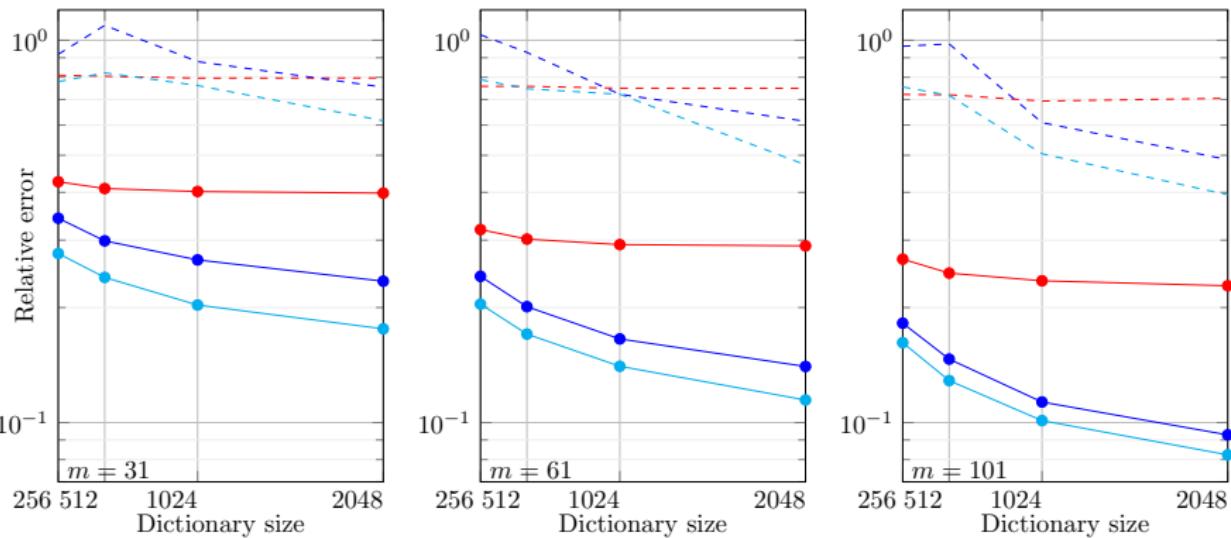


Figure: Relative H_0^1 errors on 500 test snapshots, growing dictionary sizes K , observations $m \in \{31, 61, 101\}$. Full line is the mean relative error. Dotted line is the maximal relative error. Blue is selection in $\mathcal{L}(w)$ with \mathcal{S}^Θ . Red is $\min_{V \in \mathcal{L}^{POD}} \|u - \hat{u}_V\|_U$. Cyan is $\min_{V \in \mathcal{L}(w)} \|u - \hat{u}_V\|_U$.

Conclusion

Conclusion:

- Sketched selection criterion for piecewise-linear MOR.
- **Dictionary-based MOR**, tractable with **random sketching**.

Perspectives:

- Fix observations $(\ell_i)_{1 \leq i \leq m}$ and construct suited dictionary \mathcal{D}_K .
- Fix \mathcal{D}_K and construct suited $(\ell_i)_{1 \leq i \leq m}$ (optimal information).
- Incorporate \mathcal{S}^Θ in the adaptive construction of $\mathcal{L}_r(\mathbf{z})$.

① Introduction

② Model order reduction

Dictionary-based model reduction for state estimation

Preconditioners for model order reduction by interpolation and random sketching of operators (with O. Balabanov)

③ Feature learning

Introduction

- Forward problem: parameter $\mathbf{x} \in \mathcal{X}$ is known.
- MOR: U_r is given. Compute $u_r(\mathbf{x}) \in U_r$ via Galerkin projection,

$$\forall v \in U_r, \quad \langle v, A(\mathbf{x})u_r(\mathbf{x}) \rangle = \langle v, b(\mathbf{x}) \rangle,$$

and estimate error with $\widehat{\alpha}(A(\mathbf{x}))^{-1} \|A(\mathbf{x})u_r(\mathbf{x}) - b(\mathbf{x})\|_{U'}$.

- Problem: ill-conditioned operator $A(\mathbf{x})$.
 - $u_r(\mathbf{x})$ may be far from $\Pi_{U_r} u(\mathbf{x})$.
 - Residual-based error estimator may be not efficient.
- Goal: construct $P(\mathbf{x}) : U' \rightarrow U$ a linear approximation of $A(\mathbf{x})^{-1}$
[Zahm and Nouy, 2016, Balabanov and Nouy, 2021a],

$$P(\mathbf{x}) \in \text{span}\{Y_1, \dots, Y_p\}, \quad Y_i = A(\mathbf{x}_i)^{-1}.$$

Quality measure: general purpose in operator norm

- General purpose: discrepancy in operator norm $\|I - PA\|_{U,U}$.
- Bound on the inf-sup constants of PA ,

$$1 - \|I - PA\|_{U,U} \leq \sigma_n(PA) \leq \sigma_1(PA) \leq 1 + \|I - PA\|_{U,U}.$$

- Preconditioned residual estimator $\|PAv - Pb\|_U$,

$$\frac{\|PAv - Pb\|_U}{1 + \|I - PA\|_{U,U}} \leq \|u - v\|_U \leq \frac{\|PAv - Pb\|_U}{1 - \|I - PA\|_{U,U}}.$$

- Problem: require $\|I - PA\|_{U,U} < 1$, but online computation and optimization of $P \mapsto \|I - PA\|_{U,U}$ is untractable.

Quality measure: general purpose in HS norm

- Alternative: Hilbert-Schmidt norm $\|I - PA\|_{HS(U,U)} \geq \|I - PA\|_{U,U}$.
- Minimization of the discrepancy is a least-squares problem,

$$\min_{P \in \text{span}\{Y_1, \dots, Y_p\}} \|I - PA\|_{HS(U,U)}.$$

- Problem 1: fixed P , evaluating $\|I - PA\|_{HS(U,U)}$ is (very) costly.
→ [Zahm and Nouy, 2016] used random estimator.
- Problem 2: HS norm can be much larger than operator norm,

$$\frac{1}{\sqrt{\dim(U)}} \|\cdot\|_{HS(U,U)} \leq \|\cdot\|_{U,U} \leq \|\cdot\|_{HS(U,U)}.$$

→ Seminorms tailored to MOR.

Quality measure: MOR purpose in operator seminorm

- MOR purpose: discrepancy in operator seminorms,

$$\|I - PA\|_{U,U_r} := \|\Pi_{U_r}(I - PA)\|_{U,U}.$$

- For u_r preconditioned Galerkin projection on U_r ,

$$\|u - u_r\|_U \leq \frac{1}{1 - \|I - PA\|_{U,U_r}} \|u - \Pi_{U_r} u\|_U,$$

- Computable with $(v^{(i)})_{1 \leq i \leq r}$ o.n.b of U_r ,

$$\|I - PA\|_{U,U_r}^2 = \sigma_1 \left((\langle v^{(i)}, (I - PA)(I - PA)^T v^{(j)} \rangle_U)_{1 \leq i, j \leq r} \right).$$

- + Online efficient using normal equation.
- Offline is costly and sensitive to round-off errors.
- Minimization over P is challenging.

Quality measure: MOR purpose in HS seminorm

- Assume given $U_m \supset U_r$, $r \leq m \ll n$, and for some $\tau \in (0, 1)$,

$$\|u - \Pi_{U_m} u\|_U \leq \tau \|u - u_r\|_U.$$

- A posteriori **error estimator**,

$$\begin{aligned} \frac{\|\Pi_{U_m} P(Au_r - b)\|_U}{1 + (1 + \tau) \|I - PA\|_{U, U_m}} &\leq \|u - u_r\|_U \\ &\leq \frac{\|\Pi_{U_m} P(Au_r - b)\|_U}{\sqrt{1 - \tau^2} - (1 + \tau) \|I - PA\|_{U, U_m}}. \end{aligned}$$

- $U_r \subset U_m$ thus $\|\cdot\|_{U, U_r} \leq \|\cdot\|_{U, U_m}$.

Quality measure: MOR purpose in HS seminorm

- Alternative: Hilbert-Schmidt seminorm,

$$\|I - PA\|_{HS(U, U_m)} := \|\Pi_{U_m}(I - PA)\|_{HS(U, U)},$$

- HS seminorms are almost equivalent to operator seminorms,

$$\frac{1}{\sqrt{m}} \|\cdot\|_{HS(U, U_m)} \leq \|\cdot\|_{U, U_m} \leq \|\cdot\|_{HS(U, U_m)}.$$

- Computable with $(v^{(i)})_{1 \leq i \leq m}$ o.n.b of U_m ,

$$\|I - PA\|_{HS(U, U_m)}^2 = \sum_{i=1}^m \|(I - PA)^T v^{(i)}\|_U^2,$$

- + Online efficient using normal equation.
- Offline is costly and sensitive to round-off errors.

Random sketching for HS operators

- Main challenge: Y_i are **inverses** of (sparse) matrices, only accessible via **matrix-vector products**.
- Random embedding: consider Ω , Σ and Γ “classical” random sketches, with sketching dimension k , then for an HS operator Y ,

$$\Theta(Y) := \Gamma \text{vec}(\Omega Y \Sigma^T) \in \mathbb{R}^k.$$

→ Computed with k matrix-vector products.

→ Adaptable for seminorms.

- **Oblivious subspace embedding** with $k = \mathcal{O}(\epsilon^{-2}(d + \log(n/\delta)))$: for all d -dimensional vector subspace \mathcal{Y} of HS operators,

$$\mathbb{P} \left[\forall Y \in \mathcal{Y}, \left| \|\Theta(Y)\|_2^2 - \|Y\|_{HS}^2 \right| \leq \epsilon \|Y\|_{HS}^2 \right] \geq 1 - \delta.$$

Practical aspects

- Assume parameter separability,

$$A(\mathbf{x}) = \sum_{q=1}^d x_q A_q.$$

- Construct $P(\mathbf{x})$ by solving the sketched least-squares problem,

$$\min_{P \in \text{span}\{Y_1, \dots, Y_p\}} \|\Theta(I - PA(\mathbf{x}))\|_2 = \min_{a \in \mathbb{R}^p} \|\Theta(I) - W^\Theta(\mathbf{x})a\|_2,$$

$W^\Theta(\mathbf{x}) \in \mathbb{R}^{k \times d}$ small matrix with **parameter separable** columns.

- If b is parameter separable, then preconditioned Galerkin system and preconditioned error estimator are also **parameter separable**.
- Offline cost for $HS(U, U_m)$: $\mathcal{O}((k \wedge m)pd \log(n)n)$.

Numerical example

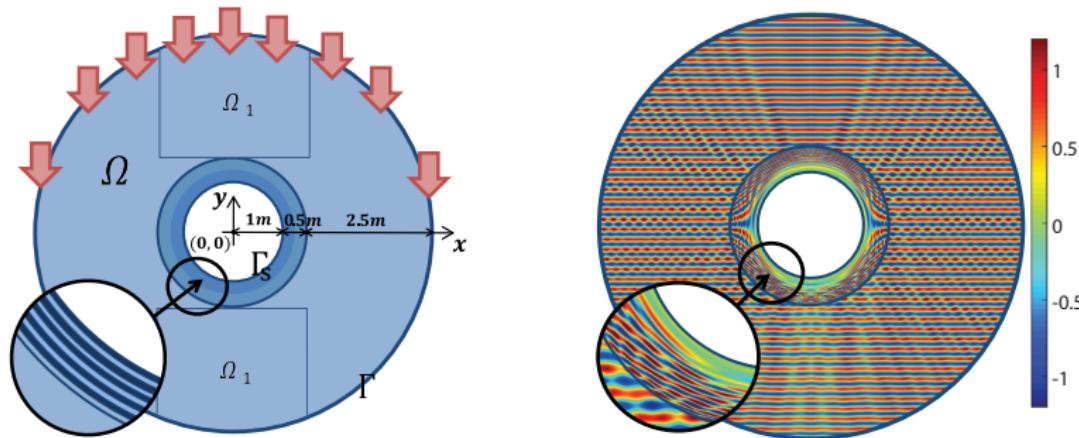


Figure: [Balabanov and Nouy, 2021b] Wave scattering in 2D with a perfect scatterer covered in an invisibility cloak composed of layers of homogeneous isotropic materials. Left: Geometry of the problem. Right: real part of random snapshot.

Numerical example

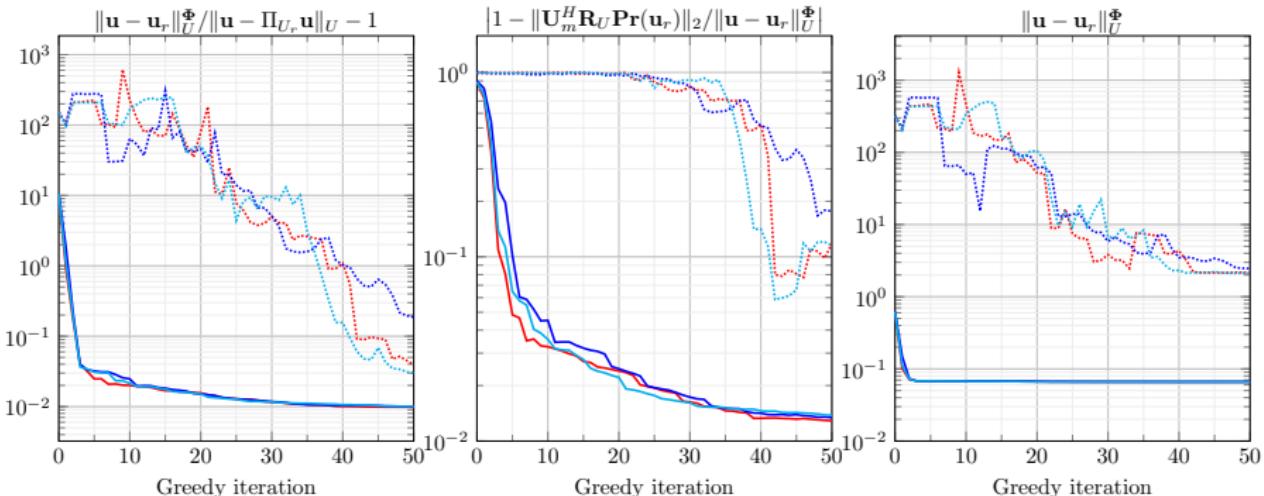


Figure: Quantiles on test sets (90% continuous, 100% dotted) for the preconditioned Galerkin projection, along the greedy construction of the preconditioner space. Left: quasi optimality. Middle: accuracy of error estimator. Right: absolute error to solution. Three sketched greedy criterions: red is $HS(U_m, U_m)$, blue is $HS(U, U_m)$, cyan is weighted sum.

Conclusion

Conclusion:

- Random sketching method for HS operators (generic approach).
- Construction of preconditioner for MOR purpose.
- Offline-online efficiency.

Perspectives for MOR:

- Greedy algorithm constructing $(Y_i)_{1 \leq i \leq p}$ and U_r at the same time, as in [Zahm and Nouy, 2016].
- Nonlinear construction of $P(\mathbf{x})$ (e.g., dictionary-based).

Perspectives for random sketching:

- Sketching of operators for other settings (e.g., eigenvalue problems, domain decomposition).

① Introduction

② Model order reduction

③ Feature learning

Surrogate to Poincaré inequalities on manifolds for dimension reduction in nonlinear feature spaces

Structured dimension reduction in nonlinear feature spaces

① Introduction

② Model order reduction

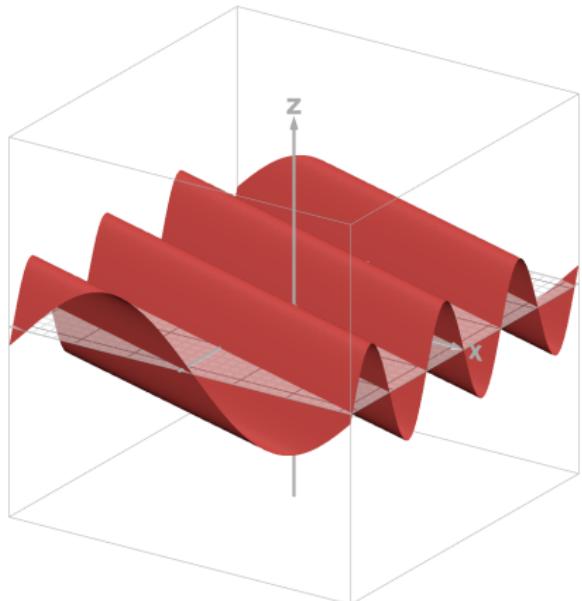
③ Feature learning

Surrogate to Poincaré inequalities on manifolds for dimension reduction in nonlinear feature spaces

Structured dimension reduction in nonlinear feature spaces

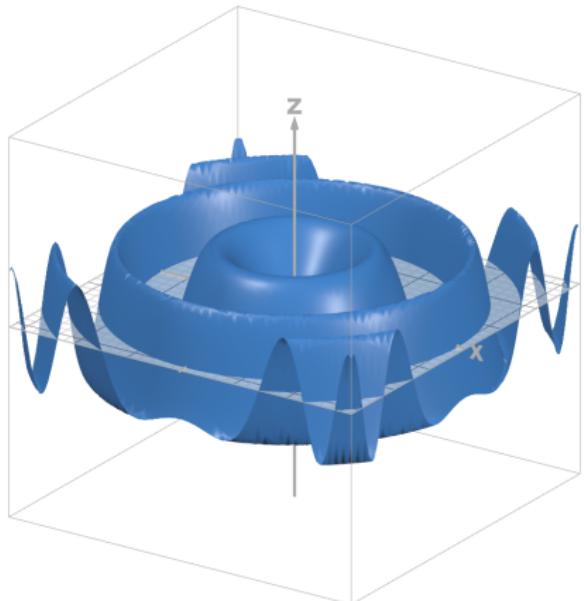
Introduction

$$u_1(\mathbf{x}) = \sin(x_1 + 3x_2)$$



Univariate in **linear feature**.

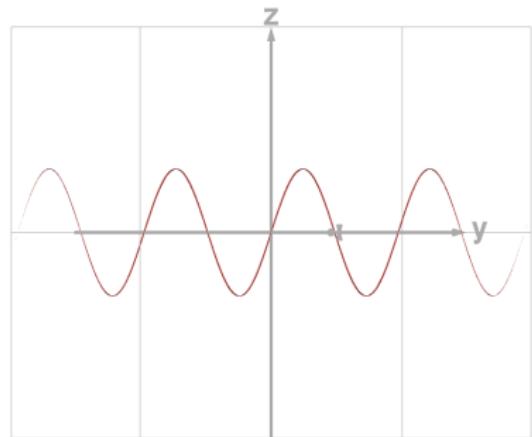
$$u_2(\mathbf{x}) = \sin(x_1^2 + x_2^2)$$



Univariate in **nonlinear feature**.

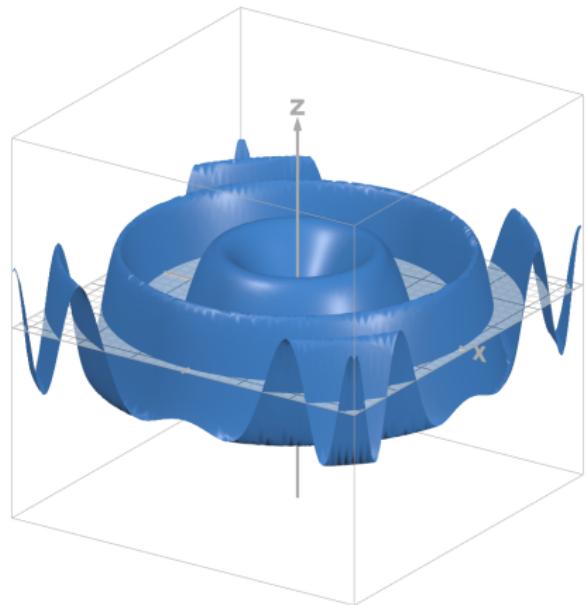
Introduction

$$u_1(\mathbf{x}) = \sin(x_1 + 3x_2)$$



Univariate in **linear feature**.

$$u_2(\mathbf{x}) = \sin(x_1^2 + x_2^2)$$



Univariate in **nonlinear feature**.

Introduction: gradient-based dimension reduction

- $\mathbf{X} \in \mathcal{X} \subset \mathbb{R}^d$ a random vector, $u : \mathcal{X} \rightarrow U = \mathbb{R}$, $d \gg 1$, $u \in \mathcal{C}^1$.
- Classical tools require sample size exponential in d .
→ **Curse of dimensionality**.
- Goal: build a **feature map** $g : \mathcal{X} \rightarrow \mathbb{R}^m$, $m \ll d$, so that u is well approximated by

$$\hat{u} : \mathbf{x} \mapsto f(g(\mathbf{x}))$$

for some low-dimensional **profile function** $f : \mathbb{R}^m \rightarrow \mathbb{R}$.

- Ideal measure of quality of g ,

$$\mathcal{E}(g) := \inf_{f: \mathbb{R}^m \rightarrow \mathbb{R}} \mathbb{E} [|u(\mathbf{X}) - f \circ g(\mathbf{X})|^2].$$

- Given: few costly point evaluations $(\mathbf{x}^{(i)}, u(\mathbf{x}^{(i)}), \nabla u(\mathbf{x}^{(i)}))_{1 \leq i \leq n_s}$.

Examples of feature maps

Feature maps considered in gradient-based dimension reduction.

- [Constantine et al., 2014]

Linear $g(\mathbf{x}) = G^T \mathbf{x}$ with $G \in \mathbb{R}^{d \times m}$.

- [Bigoni et al., 2022, Romor et al., 2022]

$g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ from vector space with basis $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}^K$ and $G \in \mathbb{R}^{K \times m}$ with $K \geq d$. **Typically Φ polynomial.**

- [Verdière et al., 2025, Zhang et al., 2019]

Diffeomorphism-based $g(\mathbf{x}) = (\psi_1(\mathbf{x}), \dots, \psi_m(\mathbf{x}))^T$ with $\psi : \mathbb{R}^d \rightarrow \mathbb{R}^d$ a diffeomorphism.

Examples of feature maps

Feature maps considered in gradient-based dimension reduction.

- [Constantine et al., 2014]

Linear $g(\mathbf{x}) = G^T \mathbf{x}$ with $G \in \mathbb{R}^{d \times m}$.

- [Bigoni et al., 2022, Romor et al., 2022]

$g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ from vector space with basis $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}^K$ and $G \in \mathbb{R}^{K \times m}$ with $K \geq d$. **Typically Φ polynomial.**

- [Verdière et al., 2025, Zhang et al., 2019]

Diffeomorphism-based $g(\mathbf{x}) = (\psi_1(\mathbf{x}), \dots, \psi_m(\mathbf{x}))^T$ with $\psi : \mathbb{R}^d \rightarrow \mathbb{R}^d$ a diffeomorphism.

Upper-bound using Poincaré inequalities

- For $g : \mathcal{X} \rightarrow \mathbb{R}^m$ and $f : \mathbb{R}^m \rightarrow \mathbb{R}$ using the chain rule,

$$u = f \circ g \implies \nabla u(\mathbf{x}) = \nabla g(\mathbf{x}) \nabla f(g(\mathbf{x})),$$

$$\implies \nabla u(\mathbf{x}) \in \text{span}\{\nabla g_1(\mathbf{x}), \dots, \nabla g_m(\mathbf{x})\} \subset \mathbb{R}^d,$$

- We search for $g \in \mathcal{G}_m$ such that $\nabla g(\mathbf{x})$ is aligned with $\nabla u(\mathbf{x})$, for example by minimizing the objective function

$$\mathcal{J}(g) := \mathbb{E} [\|\nabla u(\mathbf{X})\|_2^2] - \mathbb{E} [\|\Pi_{\nabla g(\mathbf{X})} \nabla u(\mathbf{X})\|_2^2].$$

Proposition ([Bigoni et al., 2022])

If ∇g has full matrix rank everywhere,

$$\mathcal{E}(g) \leq \left(\sup_{h \in \mathcal{G}_m} \sup_{\mathbf{z} \in h(\text{supp } \mathbf{X})} C_{\mathbf{X}|h(\mathbf{X})=\mathbf{z}} \right) \mathcal{J}(g),$$

with $C_{\mathbf{X}|h(\mathbf{X})=\mathbf{z}}$ the Poincaré constant associated to the conditional measure $\mathbf{X}|h(\mathbf{X}) = \mathbf{z}$.

On the objective function

$$\mathcal{J}(g) = \mathbb{E} [\|\nabla u(\mathbf{X})\|_2^2] - \mathbb{E} [\|\Pi_{\nabla g(\mathbf{X})} \nabla u(\mathbf{X})\|_2^2].$$

- Linear features: $g(\mathbf{x}) = G^T \mathbf{x}$ with $G^T G = I_m$, then $\Pi_{\nabla g(\mathbf{X})} = G G^T$, thus $G \mapsto \mathcal{J}(G^T)$ is **quadratic** and minimized by the **dominant eigenvectors** of

$$\mathbb{E} [\nabla u(\mathbf{X}) \nabla u(\mathbf{X})^T] \in \mathbb{R}^{d \times d}.$$

- Nonlinear features: $g(\mathbf{x}) = G^T \Phi(\mathbf{x})$ with fixed $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}^K$,

$$\Pi_{\nabla g(\mathbf{X})} = \nabla \Phi(\mathbf{X}) G (G^T \nabla \Phi(\mathbf{X})^T \nabla \Phi(\mathbf{X}) G)^{-1} G^T \nabla \Phi(\mathbf{X})^T,$$

thus \mathcal{J} is **not convex** anymore and **no explicit minimizer** is known.
→ Design quadratic surrogates.

Surrogate for $m = 1$

- With $m = 1$ the objective function writes

$$\begin{aligned}\mathcal{J}(g) &= \mathbb{E} \left[\|\nabla u(\mathbf{X})\|_2^2 - \frac{(\nabla g(\mathbf{X})^T \nabla u(\mathbf{X}))^2}{\|\nabla g(\mathbf{X})\|_2^2} \right] \\ &= \mathbb{E} \left[\underbrace{\frac{1}{\|\nabla g(\mathbf{X})\|_2^2} \|\nabla u(\mathbf{X})\|_2^2 \|\Pi_{\nabla u(\mathbf{X})}^\perp \nabla g(\mathbf{X})\|_2^2}_{\text{Quadratic wrt } g} \right].\end{aligned}$$

- Control on $\|\nabla g(\mathbf{X})\|_2^2$ yields control on $\mathcal{J}(g)$ with a **quadratic** surrogate,

$$\mathcal{L}_1(g) := \mathbb{E} \left[\|\nabla u(\mathbf{X})\|_2^2 \|\Pi_{\nabla u(\mathbf{X})}^\perp \nabla g(\mathbf{X})\|_2^2 \right].$$

- Uniform lower bound on $\|\nabla g(\mathbf{X})\|_2^2$ not available (e.g. polynomials).

Deviation inequalities for polynomials

Control $\|\nabla g(\mathbf{X})\|_2^2$ in terms of deviation inequalities, i.e. the decay of

$$\underbrace{\mathbb{P} [\|\nabla g(\mathbf{X})\|_2^2 \leq \beta^{-1}]}_{\text{Small deviations}}, \underbrace{\mathbb{P} [\|\nabla g(\mathbf{X})\|_2^2 \geq \beta]}_{\text{Large deviations}} \quad \text{as } \beta \rightarrow +\infty.$$

Proposition (Direct consequence of [Fradelizi, 2009])

If \mathbf{X} is uniformly distributed on a convex set and $h : \mathbb{R}^d \rightarrow \mathbb{R}$ is polynomial with total degree at most k , then for all $\beta > 0$,

$$\mathbb{P} [|h(\mathbf{X})| \leq \beta^{-1}] \lesssim \beta^{-1/k}.$$

- Generalized to s -concave measures (here $s = 1/d$).
- Generalized to h satisfying a Remez inequality.
- Constants behind \lesssim involve moments of $|h(\mathbf{X})|$.

Analysis of the surrogate for $m = 1$

Assumptions

- (1) \mathbf{X} is uniformly distributed on a convex set.
- (2) Every $g \in \mathcal{G}_1$ is a non-constant polynomial of total degree at most $\ell + 1$ such that $\mathbb{E} [\|\nabla g(\mathbf{X})\|_2^2] = 1$. \rightarrow Feasible in practice.

Proposition (Nouy and P. 2025)

Under (1) and (2), if $\|\nabla u(\mathbf{X})\|_2^2 \leq 1$ a.s., then for all $g \in \mathcal{G}_m$,

$$\gamma_2^{-1} \mathcal{L}_1(g) \leq \mathcal{J}(g) \leq \gamma_1 \mathcal{L}_1(g)^{\frac{1}{1+2\ell}},$$

with $\gamma_1 \leq 64 \min(3\ell, d)$ and $\gamma_2 \leq 2(8d)^{2\ell}$. For g^* minimizer of \mathcal{L}_1 on \mathcal{G}_1 ,

$$\mathcal{J}(g^*) \leq \gamma_3 \inf_{h \in \mathcal{G}_1} \mathcal{J}(h)^{\frac{1}{1+2\ell}}, \quad \gamma_3 \leq 1024d \min(3\ell, d).$$

Results available for s -concave measures (here $s = 1/d$) and for functions satisfying a type of Remez inequality.

Minimizing the surrogate for $m = 1$

Assumption (2) is satisfied if we take $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}^K$ polynomial such that $\nabla\Phi(\mathbf{X})$ has full rank a.s, and

$$\mathcal{G}_1 := \left\{ g : \mathbf{x} \mapsto G^T \Phi(\mathbf{x}) : G \in \mathbb{R}^K, G^T \mathbb{E} [\nabla\Phi(\mathbf{X})^T \nabla\Phi(\mathbf{X})] G = 1 \right\}.$$

Proposition (Nouy and P. 2025)

$$\min_{g \in \mathcal{G}_1} \mathcal{L}_1(g) = \min_{\substack{G \in \mathbb{R}^K \\ G^T R G = 1}} G^T H G,$$

with $R := \mathbb{E} [\nabla\Phi(\mathbf{X})^T \nabla\Phi(\mathbf{X})] \in \mathbb{R}^{K \times K}$ and

$$H := \mathbb{E} [\nabla\Phi(\mathbf{X})^T (\|\nabla u(\mathbf{X})\|_2^2 \mathbf{I}_d - \nabla u(\mathbf{X}) \nabla u(\mathbf{X})^T) \nabla\Phi(\mathbf{X})] \in \mathbb{R}^{K \times K}.$$

Extension to $m > 1$

- With similar reasoning, we define for $1 \leq j \leq m$,

$$\mathcal{L}_{m,j}(g) := \mathbb{E} \left[\|v_{g,j}(\mathbf{X})\|_2^2 \|\Pi_{v_{g,j}(\mathbf{X})}^\perp w_{g,j}(\mathbf{X})\|_2^2 \right],$$

with $v_{g,j}(\mathbf{x}) := \Pi_{\nabla g_{-j}(\mathbf{x})}^\perp \nabla u(\mathbf{x})$ and $w_{g,j}(\mathbf{x}) := \Pi_{\nabla g_{-j}(\mathbf{x})}^\perp \nabla g_j(\mathbf{x})$

- Fix $g \in \mathcal{G}_m$, $h \mapsto \mathcal{L}_{m,j}((g_1, \dots, g_{j-1}, h, g_{j+1}, \dots, g_m))$ is **quadratic**.

Proposition (Nouy and P. 2025)

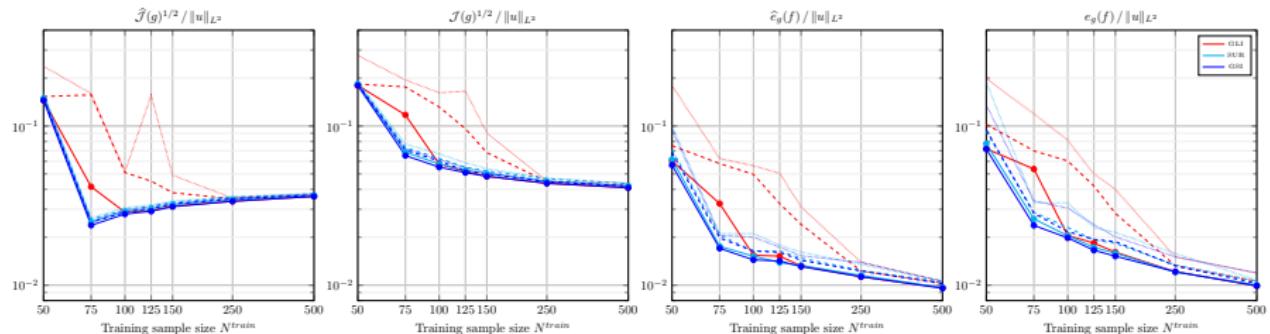
Under the previous assumptions, for all $g \in \mathcal{G}_m$,

$$\tilde{\gamma}_2^{-1} \mathcal{L}_{m,j}(g) \leq \mathcal{J}(g) \leq \tilde{\gamma}_1 \nu_{\mathcal{G}_m}^{-\frac{1}{1+2\ell m}} \mathcal{L}_{m,j}(g)^{\frac{1}{1+2\ell m}},$$

with $\tilde{\gamma}_1 \leq 2^9 m^{1/4\ell} d \min(d, 3\ell m)$, $\tilde{\gamma}_2 \leq 2^{7\ell} d^{2\ell}$ and

$$\nu_{\mathcal{G}_m} := \sup_{h \in \mathcal{G}_m} \mathbb{E} \left[\det \nabla h(\mathbf{X})^T \nabla h(\mathbf{X}) \right].$$

Numerical experiment $m = 1$



$$u(x) := \exp\left(\frac{1}{d} \sum_{i=1}^d \sin(x_i) e^{\cos(x_i)}\right), \quad \mathbf{X} \sim \mathcal{U}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^d, \quad m = 1.$$

50%, 90% and 100% quantiles over 20 realizations.

Left plots: train and test estimations of $\mathcal{J}(g)/\|u\|_{L^2}$.

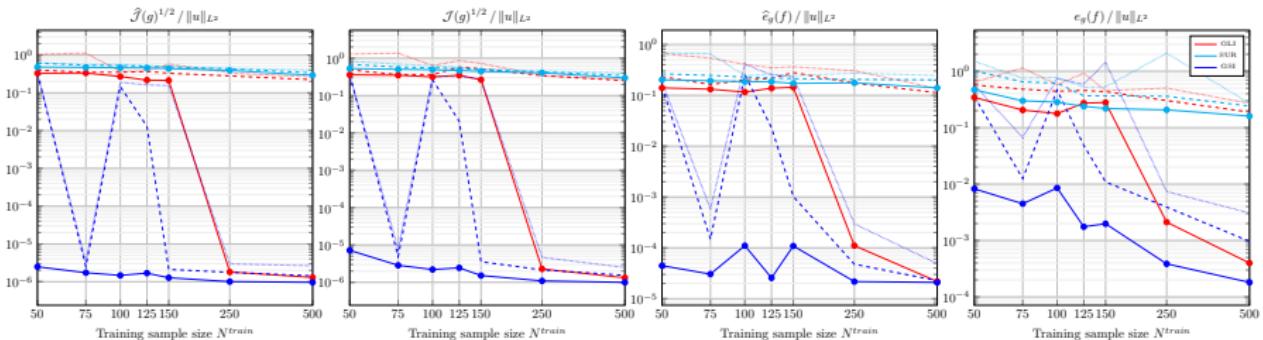
Right plots: train and test estimations of $\|u - f \circ g\|_{L^2}/\|u\|_{L^2}$.

Red: quasi-Newton minimization of \mathcal{J} .

Cyan: minimization of the surrogate.

Blue: surrogate as initialization of quasi-Newton for \mathcal{J} .

Numerical experiment $m = 2$



$$u(x) := \cos\left(\frac{1}{2}x^T x\right) + \sin\left(\frac{1}{2}x^T Mx\right), \quad \mathbf{X} \sim \mathcal{U}(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^8), \quad m = 2.$$

50%, 90% and 100% quantiles over 20 realizations.

Left plots: train and test estimations of $\mathcal{J}(g)/\|u\|_{L^2}$.

Right plots: train and test estimations of $\|u - f \circ g\|_{L^2}/\|u\|_{L^2}$.

Red: quasi-Newton minimization of \mathcal{J} .

Cyan: minimization of the surrogate.

Blue: surrogate as initialization of quasi-Newton for \mathcal{J} .

① Introduction

② Model order reduction

③ Feature learning

Surrogate to Poincaré inequalities on manifolds for dimension reduction in nonlinear feature spaces

Structured dimension reduction in nonlinear feature spaces

Introduction

Same setting as previous section, but with structured feature maps.

1- Collective setting, $Y \in \mathcal{Y}$ random variable, $u : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$,

$$\hat{u} : (\mathbf{x}, y) \mapsto f(g(\mathbf{x}), y).$$

2- Two variables setting, $\alpha \subset \{1, \dots, d\}$, $u : \mathcal{X}_\alpha \times \mathcal{X}_{\alpha^c} \rightarrow \mathbb{R}$,

$$\hat{u} : \mathbf{x} \mapsto f(g^\alpha(\mathbf{x}_\alpha), g^{\alpha^c}(\mathbf{x}_{\alpha^c})).$$

3- Multiple variables setting, $S \subset \mathcal{P}(\{1, \dots, d\})$, $u : \times_{\alpha \in S} \mathcal{X}_\alpha \rightarrow \mathbb{R}$,

$$\hat{u} : \mathbf{x} \mapsto f(g^{\alpha_1}(\mathbf{x}_{\alpha_1}), \dots, g^{\alpha_{|S|}}(\mathbf{x}_{\alpha_{|S|}})).$$

Collective dimension reduction

- Goal: for $\mathbf{X} \in \mathcal{X} \subset \mathbb{R}^d$, $\mathbf{Y} \in \mathcal{Y}$ independent of \mathbf{X} , approximate

$$u_{\mathbf{Y}} := u(\cdot, \mathbf{Y}) : \mathbb{R}^d \rightarrow \mathbb{R}, \quad u_{\mathbf{Y}} \in \mathcal{C}^1(\mathcal{X}, \mathbb{R})$$

- Approximation format: use the same feature map for all \mathbf{Y} ,

$$\hat{u} : (\mathbf{x}, \mathbf{y}) \mapsto f(g(\mathbf{x}), \mathbf{y}).$$

- Ideal measure of quality of $g \in \mathcal{G}_m$,

$$\mathcal{E}_{\mathcal{X}}(g) := \inf_{f: \mathbb{R}^m \times \mathcal{Y} \rightarrow \mathbb{R}} \mathbb{E} [|u_{\mathbf{Y}}(\mathbf{X}, \mathbf{Y}) - f(g(\mathbf{X}), \mathbf{Y})|^2].$$

- Poincaré-based upper bound: apply [Bigoni et al., 2022] to $u_{\mathbf{Y}}$,

$$\mathcal{E}_{\mathcal{X}}(g) \leq C_{\mathbf{X}|\mathcal{G}_m} \mathcal{J}_{\mathcal{X}}(g), \quad \mathcal{J}_{\mathcal{X}}(g) := \mathbb{E} \left[\|\Pi_{\nabla g(\mathbf{X})}^{\perp} \nabla u_{\mathbf{Y}}(\mathbf{X})\|_2^2 \right].$$

Truncation in the objective function

- Observe that

$$\mathcal{J}_{\mathcal{X}}(g) \geq \mathbb{E}_{\mathbf{X}} \left[\min_{V(\mathbf{X}) \in \mathbb{R}^{d \times m}} \mathbb{E}_{\mathbf{Y}} \left[\|\Pi_{V(\mathbf{X})}^\perp \nabla u_{\mathbf{Y}}(\mathbf{X})\|_2^2 \right] \right] := \varepsilon_m.$$

- For any $\mathbf{x} \in \mathcal{X}$, the solution $V_m(\mathbf{x})$ to the minimization problem is given by the dominant eigenspace of

$$M(\mathbf{X}) := \mathbb{E}_{\mathbf{Y}} [\nabla u_{\mathbf{Y}}(\mathbf{X}) \nabla u_{\mathbf{Y}}(\mathbf{X})^T] \in \mathbb{R}^{d \times d}.$$

- Surrogate by truncating the part of $\nabla u_{\mathbf{Y}}(\mathbf{X})$ orthogonal to $V_m(\mathbf{X})$,

$$\mathcal{J}_{\mathcal{X},m}(g) := \mathbb{E} \left[\|\Pi_{\nabla g(\mathbf{X})}^\perp \Pi_{V_m(\mathbf{X})} \nabla u_{\mathbf{Y}}(\mathbf{X})\|_2^2 \right].$$

Properties of the truncated objective function

- Minimizing $\mathcal{J}_{\mathcal{X},m}$ is almost the same as minimizing $\mathcal{J}_{\mathcal{X}}$, as

$$\frac{1}{2}(\mathcal{J}_{\mathcal{X},m}(g) + \varepsilon_m) \leq \mathcal{J}_{\mathcal{X}}(g) \leq \mathcal{J}_{\mathcal{X},m}(g) + \varepsilon_m.$$

- $\mathcal{J}_{\mathcal{X},m}$ is better suited for our construction of quadratic surrogates,

$$\begin{aligned} \mathbb{E} \left[\frac{\sigma_m(M(\mathbf{X}))}{\sigma_1(\nabla g(\mathbf{X}))^2} \underbrace{\|\Pi_{V_m(\mathbf{X})}^\perp \nabla g(\mathbf{X})\|_F^2}_{\text{quadratic in } g} \right] &\leq \mathcal{J}_{\mathcal{X},m}(g) \\ &\leq \mathbb{E} \left[\frac{\sigma_1(M(\mathbf{X}))}{\sigma_m(\nabla g(\mathbf{X}))^2} \underbrace{\|\Pi_{V_m(\mathbf{X})}^\perp \nabla g(\mathbf{X})\|_F^2}_{\text{quadratic in } g} \right]. \end{aligned}$$

- Need concentration inequalities on $\sigma_i(\nabla g(\mathbf{X}))^2$.

Surrogate for collective dimension reduction

- Define surrogate in collective setting,

$$\mathcal{L}_{\mathcal{X},m}(g) := \mathbb{E} \left[\sigma_1(M(\mathbf{X})) \|\Pi_{V_m(\mathbf{X})}^\perp \nabla g(\mathbf{X})\|_F^2 \right].$$

Proposition (Nouy and P. 2025)

Under (1) and (2), if $\sigma_1(M(\mathbf{X})) \leq 1$ a.s., then for all $g \in \mathcal{G}_m$,

$$\mathcal{J}_{\mathcal{X},m}(g) \leq \gamma_{\mathcal{G}_m} \mathcal{L}_{\mathcal{X},m}(g)^{\frac{1}{1+2\ell_m}}.$$

- The surrogate is quadratic, $\mathcal{L}_{\mathcal{X},m}(G^T \Phi) = \text{Tr} (G^T H_{\mathcal{X},m} G)$, with
$$H_{\mathcal{X},m} = \mathbb{E} \left[\sigma_1(M(\mathbf{X})) \nabla \Phi(\mathbf{X}) (I_d - V_m(\mathbf{X}) V_m(\mathbf{X})^T) \nabla \Phi(\mathbf{X})^T \right].$$
- Problem: estimating $M(\mathbf{x}) = \mathbb{E}_{\mathbf{Y}} [\nabla u_{\mathbf{Y}}(\mathbf{x}) \nabla u_{\mathbf{Y}}(\mathbf{x})^T]$ and dominant eigenvectors $V_m(\mathbf{x})$. Requires specific sampling (tensorized).

Two variables approach

- Goal: for $\alpha \subset \{1, \dots, d\}$, split $\mathbf{X} = (\mathbf{X}_\alpha, \mathbf{X}_{\alpha^c})$, assume $\mathbf{X}_\alpha \perp\!\!\!\perp \mathbf{X}_{\alpha^c}$, approximate $u : \mathbb{R}^d \rightarrow \mathbb{R} \in \mathcal{C}^1$.
- Approximation format: separated features in \mathbf{X}_α and \mathbf{X}_{α^c} ,

$$\hat{u} : \mathbf{x} \mapsto f(g^\alpha(\mathbf{x}_\alpha), g^{\alpha^c}(\mathbf{x}_{\alpha^c})).$$

- Ideal measure of quality of $g \in \mathcal{G}_m$ writes

$$\mathcal{E}(g) = \inf_{f: \mathbb{R}^{m_\alpha} \times \mathbb{R}^{m_{\alpha^c}} \rightarrow \mathbb{R}} \mathbb{E} [|u_Y(\mathbf{X}) - f(g^\alpha(\mathbf{X}_\alpha), g^{\alpha^c}(\mathbf{X}_{\alpha^c}))|^2].$$

- Link to the collective setting to use our surrogates ?

Two variables approach

- Recall that $g : \mathbf{x} \mapsto (g^\alpha(\mathbf{x}_\alpha), g^{\alpha^c}(\mathbf{x}_{\alpha^c}))$.
- Definition of the Poincaré inequality based objective function yields

$$\mathcal{J}(g) = \mathcal{J}_{\mathcal{X}_\alpha}(g^\alpha) + \mathcal{J}_{\mathcal{X}_{\alpha^c}}(g^{\alpha^c}).$$

\Rightarrow Exactly the same as two collective settings.

- Inspiring from analysis of HOSVD for Tucker tensor format,

$$\mathcal{E}(g) \leq \mathcal{E}_{\mathcal{X}_\alpha}(g^\alpha) + \mathcal{E}_{\mathcal{X}_{\alpha^c}}(g^{\alpha^c}) \leq 2\mathcal{E}(g).$$

\Rightarrow Almost the same as two collective settings.

Multiple variables approach

- Consider $g : \mathbf{x} \mapsto (g^{\alpha_1}(\mathbf{x}_{\alpha_1}), \dots, g^{\alpha_{|S|}}(\mathbf{x}_{\alpha_{|S|}}))$, $S \subset \mathcal{P}(\{1, \dots, d\})$.
- Definition of the Poincaré inequality based objective function yields

$$\mathcal{J}(g) = \sum_{\alpha \in S} \mathcal{J}_{\mathcal{X}_\alpha}(g^\alpha).$$

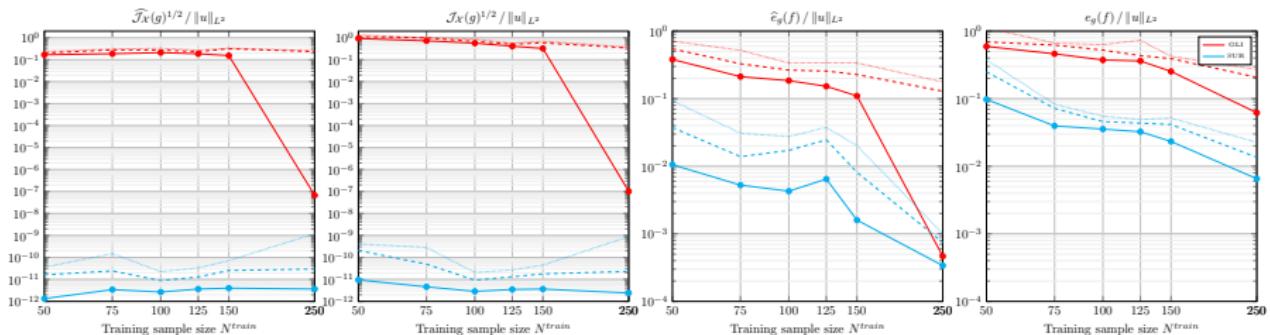
\Rightarrow Exactly the same as $|S|$ collective settings.

- Approach from HOSVD of Tucker tensor format and independence of $(\mathbf{X}_\alpha)_{\alpha \in S}$ yields

$$\mathcal{E}(g) \leq \sum_{\alpha \in S} \mathcal{E}_{\mathcal{X}_\alpha}(g^\alpha) \leq |S| \mathcal{E}(g).$$

\Rightarrow Almost the same as $|S|$ collective settings.

Numerical experiment: collective setting



$$u(\mathbf{x}, y) := \sum_{k=1}^p (\mathbf{x}^T Q_k \mathbf{x})^2 \sin\left(\frac{\pi k}{2p} y\right),$$

$$\mathbf{X} \sim \mathcal{U}([-1, 1]^8), \quad Y \sim \mathcal{U}([-1, 1]), \quad p = m = 3.$$

50%, 90% and 100% quantiles over 20 realizations.

Left plots: train and test estimations of $\mathcal{J}(g)/\|u\|_{L^2}$.

Right plots: train and test estimations of $\|u - f \circ g\|_{L^2}/\|u\|_{L^2}$.

Red: quasi-Newton minimization of \mathcal{J} .

Cyan: minimization of the surrogate.

Conclusion

Conclusion:

- **Quadratic surrogate** to the non-convex objective function arising from **gradient-based dimension reduction**.
- Quasi-optimality results for our surrogates, especially for $m = 1$.
- Extension to the **collective dimension reduction** setting.
- Correspondence between separated features and collective setting.

Perspectives:

- Other classes of feature maps (e.g. diffeomorphisms, low-rank).
- Extensive numerical tests.
- Applications to compression of fast-to-evaluate functions u .
- Extension to Bayesian inverse problems.

Thank you for your attention.

References I

- Balabanov, O. and Nouy, A. (2019).
Randomized linear algebra for model reduction. Part I: Galerkin methods and error estimation.
Adv Comput Math, 45(5-6):2969–3019.
- Balabanov, O. and Nouy, A. (2021a).
Preconditioners for model order reduction by interpolation and random sketching of operators.
arXiv:2104.12177 [cs, math].
- Balabanov, O. and Nouy, A. (2021b).
Randomized linear algebra for model reduction—part II: Minimal residual methods and dictionary-based approximation.
Adv Comput Math, 47(2):26.

References II

- Bigoni, D., Marzouk, Y., Prieur, C., and Zahm, O. (2022). Nonlinear dimension reduction for surrogate modeling using gradient information. *Information and Inference: A Journal of the IMA*, 11(4):1597–1639.
- Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., and Wojtaszczyk, P. (2017). Data Assimilation in Reduced Modeling. *SIAM/ASA J. Uncertainty Quantification*, 5(1):1–29.
- Cohen, A., Dahmen, W., Mula, O., and Nichols, J. (2022). Nonlinear Reduced Models for State and Parameter Estimation. *SIAM/ASA J. Uncertainty Quantification*, 10(1):227–267.

References III

- Constantine, P. G., Dow, E., and Wang, Q. (2014).
Active Subspace Methods in Theory and Practice: Applications to
Kriging Surfaces.
SIAM J. Sci. Comput., 36(4):A1500–A1524.
- Fradelizi, M. (2009).
Concentration inequalities for s-concave measures of dilations of Borel
sets and applications.
Electron. J. Probab., 14(none).
- Kaulmann, S. and Haasdonk, B. (2013).
Online greedy reduced basis construction using dictionaries.
In *VI International Conference on Adaptive Modeling and Simulation
ADMOS 2013*, page 12.

References IV

- Logan, B. F. and Shepp, L. A. (1975).
Optimal reconstruction of a function from its projections.
Duke Math. J., 42(4).
- Maday, Y., Patera, A. T., Penn, J. D., and Yano, M. (2015).
A parameterized-background data-weak approach to variational data assimilation: Formulation, analysis, and application to acoustics.
Int. J. Numer. Meth. Engng, 102(5):933–965.
- Martinsson, P.-G. and Tropp, J. A. (2020).
Randomized numerical linear algebra: Foundations and algorithms.
Acta Numerica, 29:403–572.

References V

- Romor, F., Tezzele, M., Lario, A., and Rozza, G. (2022). Kernel-based active subspaces with application to computational fluid dynamics parametric problems using the discontinuous Galerkin method. *Numerical Meth Engineering*, 123(23):6000–6027.
- Temlyakov, V. N. (1998). Nonlinear Kolmogorov widths. *Math Notes*, 63(6):785–795.
- Verdière, R., Prieur, C., and Zahm, O. (2025). Diffeomorphism-based feature learning using Poincaré inequalities on augmented input space. *Journal of Machine Learning Research*, 26(139):1–31.

References VI

- Veroy, K., Prud'homme, C., Rovas, D., and Patera, A. (2003). A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations. In *16th AIAA Computational Fluid Dynamics Conference*, Orlando, Florida. American Institute of Aeronautics and Astronautics.
- Woodruff, D. P. (2014). Sketching as a Tool for Numerical Linear Algebra. *FNT in Theoretical Computer Science*, 10(1-2):1–157.
- Zahm, O. and Nouy, A. (2016). Interpolation of Inverse Operators for Preconditioning Parameter-Dependent Equations. *SIAM J. Sci. Comput.*, 38(2):A1044–A1074.

References VII

- Zhang, G., Zhang, J., and Hinkle, J. (2019).
Learning nonlinear level sets for dimensionality reduction in function approximation.
In *Advances in Neural Information Processing Systems*, volume 32.
Curran Associates, Inc.